

Diagnostic environnemental

Création d'une nouvelle unité de cimenterie

Détail des modifications apportées au document

Version	Commentaires	Date	Visa
Α	Rapport	29/11/2019	CCR

Résumé non technique

Le bureau d'études ESIRIS GROUP a été missionné par la société CIMENTS CALCIA pour réaliser un diagnostic environnemental au droit du site d'étude, occupé par une cimenterie, basée au 1 rue du Fief d'Argent à AIRVAULT (79).

La zone d'étude, divisée en 4 sous-zones, d'une emprise totale d'environ 21 500 m², correspond à des parcelles enherbées et vallonnées, pouvant accueillir des stocks de terres, et des voies de circulation, internes à la cimenterie.

Le projet consiste en la construction d'une nouvelle unité, sous forme de 4 nouveaux bâtiments, au sein de la cimenterie.

Les investigations de sol, menées en octobre 2019, ont permis de constater la présence de remblais calcaires ou marneux. Aucun indice organoleptique n'a été observé.

Les résultats d'analyses ont permis d'observer, d'un point de vue sanitaire, des traces en éléments organiques et inorganiques, non représentatives de la qualité globale de la zone d'étude, au vu de leur caractère ponctuel.

Les recommandations formulées sont :

- la mise en place d'un recouvrement au droit des zones de pleine terre faisant l'objet de remblaiement par des terres présentant des traces en métaux notamment, de type terre végétale sur 30 cm d'épaisseur, couche d'enrobé ou dalle en béton afin de s'affranchir de risques sanitaires (ingestion de sol, inhalation de poussières et contact cutané),
- l'utilisation des terres présentant des substances en éléments volatils et semivolatils, uniquement au droit des espaces extérieurs (parkings extérieurs, voiries et espaces paysagers).

Les résultats d'analyses ont également mis en évidence un uniquement dépassement retenu en antimoine sur éluats vis-à-vis des critères de l'arrêté du 12 décembre 2014.

D'un point de vue des excavations des terres, les filières de type ISDI et ISDI-AS ont été proposées, sous réserve d'acceptation de ces centres.

Fiche Synoptique

Client	CIMENTS CALCIA
Site	Adresse: 1 rue du Fief d'Argent, AIRVAULT (79) Occupation actuelle: Espaces enherbés et vallonnés, voies de circulation internes à la cimenterie et stocks de terres.
Contexte de l'étude	Construction d'une nouvelle unité au sein de la cimenterie
Documents de base	Plan Autocad de la zone d'étude
Études antérieures	Aucune étude environnementale antérieure ne semble pas avoir été menée au droit du site d'étude.
Nature de l'intervention	Réalisation de 9 sondages à la foreuse équipée en tricône de diamètre 89 mm entre 2 et 5 m de profondeur
	Les résultats d'analyses ont révélé :
Résultats dans les sols	- La présence de traces en métaux, HCT (dont les semi-volatils), BTEX, HAP et PCB,
	- La présence d'un unique dépassement retenu (antimoine sur éluats) vis-à-vis des critères de l'arrêté du 12 décembre 2014.
	Vis-à-vis des enjeux sanitaires, au regard des aménagements et des concentrations observées, les recommandations suivantes ont été formulées: - la mise en place d'un recouvrement au droit des zones de pleine terre faisant l'objet de remblaiement par des terres présentant des traces en métaux notamment, de type terre végétale sur 30 cm d'épaisseur, couche d'enrobé ou dalle en béton afin de s'affranchir de risques sanitaires (ingestion de sol, inhalation de poussières et contact cutané), - l'utilisation des terres présentant des substances en éléments volatils et semi-volatils, uniquement au droit des espaces extérieurs (parkings extérieurs, voiries et espaces paysagers).
Conclusion et recommandations	D'un point de vue des éventuelles évacuations, les terres possiblement excavées dans le cadre du projet d'aménagement sont redevables de plusieurs installations de stockage : - Installation de Stockage de Déchets Inertes avec Arrêté Spécifique (ISDI-AS) pour les terres caractérisées par des anomalies en fluorures sur éluats ou antimoine sur éluats, inférieures à 3 fois le seuil de l'arrêté du 12 décembre 2014, au prix de 30 € HT/T, hors transport, sous réserve d'acceptation du centre, - Installation de Stockage de Déchets Inertes (ISDI) pour le reste des terres, au prix de 12 € HT/m³ foisonné, hors transport, sous réserve d'acceptation du centre. Ces prix sont donnés à titre indicatif, selon les prix et pratiques portés à notre connaissance en 2019 en fonction des différentes filières en Ile de France. Il revient au maître d'ouvrage de les faire préciser lors de la sélection du centre de stockage.

SOMMAIRE

1	INTRODUCTION - CONTEXTE DE LA MISSION	5
1.1.	Objet de l'etude	5
1.2.	METHODOLOGIE	5
2	PRESENTATION DU SITE	6
2.1.	SITUATION GEOGRAPHIQUE	6
2.2.	DESCRIPTION DE L'OCCUPATION DES SOLS ET DU PROJET	6
3	VISITE DE SITE (A100)	
4	INVESTIGATIONS SUR LES SOLS (A200)	8
4.1.	REALISATION ET LOCALISATION DES SONDAGES	8
4.2.	LITHOLOGIES ET OBSERVATIONS ORGANOLEPTIQUES	8
4.3.	Prelevements et conditionnement des echantillons de sols	8
4.4.	Strategie, grille d'analyse, conditionnement et procedures analytiques	9
5	RESULTATS D'ANALYSES ET INTERPRETATIONS (CODE A270)	9
5.1.	PRECISIONS SUR LES VALEURS DE REFERENCE	9
5.2.	RESULTATS D'ANALYSES DANS LES SOLS	9
5.3.	Interpretations des resultats	12
6	SCHEMA CONCEPTUEL	
7	CONCLUSION ET RECOMMANDATIONS	
8	LIMITES D'UTILISATION D'UNE ETUDE ENVIRONNEMENT	16
	LISTE DES TABLEAUX	
TABL	LEAU 1 – GRILLE DES PARAMETRES ANALYSES, ECHANTILLONS ET OBJECTIFS	9
TABL	LEAU 2 : TABLEAU DES FILIERES D'EVACUATION	12
TABL	LEAU 3 - RECAPITULATIF DES VOIES D'EXPOSITION POSSIBLE	14
	LISTE DES FIGURES	
Figu	JRE 1 : LOCALISATION DU SITE (SOURCE GEOPORTAIL)	6
Figu	JRE 2 : VUE AERIENNE DE LA ZONE D'ETUDE	7
	ANNEXES	
Ann	NEXE 1: PLAN DE SITUATION ACTUELLE AVEC IMPLANTATION	
Ann	NEXE 2 : REPORTAGE PHOTOGRAPHIQUE	
Ann	nexe 3 : Coupes lithologiques des investigations de sol	
Ann	NEXE 4 : CERTIFICATS D'ANALYSES	
ΔΝΝ	JEXE 5 · CARTOGRAPHIE DES RESULTATS D'ANALYSES	

1 INTRODUCTION - CONTEXTE DE LA MISSION

1.1. OBJET DE L'ETUDE

Le présent rapport expose les résultats du diagnostic environnemental mené par ESIRIS GROUP au sein de la cimenterie de CALCIA, basée à AIRVAULT (79).

Dans le cadre de la construction d'une nouvelle unité de la cimenterie, la société CIMENTS CALCIA a souhaité la réalisation d'un diagnostic environnemental. Actuellement l'ensemble des zones d'études correspond à des parcelles enherbées ou des parcelles faisant l'objet de travaux (remblaiements, voies de circulation...).

Aucune étude environnementale antérieure n'a été menée au droit de la zone d'étude.

Le plan de projet est présenté en annexe 1.

Ce rapport présente un compte rendu des investigations réalisées par ESIRIS ASO en octobre 2019 et une interprétation des résultats réalisée par ESIRIS IDF INFRA.

1.2. METHODOLOGIE

Conformément à la circulaire du 8 février 2007 du Ministère de l'Ecologie et du Développement Durable, ESIRIS IDF INFRA a pris en compte les textes et outils de la politique nationale de gestion des sites et sols pollués à savoir :

- ➤ le guide « Diagnostic de site » du 8 février 2007 du Ministère en charge de l'Environnement.
- ➤ la norme NF X 31-620, parties 1 à 5, concernant les prestations de services relatives aux sites et sols pollués (étude, ingénierie, réhabilitation de sites pollués et travaux de dépollution), de décembre 2018,
- ➢ la norme NF ISO 18400-101 à 105 et 201 à 203 « Qualité du sol Échantillonnage », de juillet 2007 (partie 101), de décembre 2017 (parties 102, 103, 105 et 201) et d'octobre 2018 (partie 104, 202 et 203).

Dans le cadre de cette étude, ESIRIS IDF INFRA a réalisé les missions suivantes, suivant la norme NF X 31-620 de décembre 2018, à savoir :

- Visite détaillée du site, codifiée A100,
- Investigations sur les sols, codifiées A200,
- Interprétations des résultats des investigations, codifiées A270.

2 PRESENTATION DU SITE

2.1. SITUATION GEOGRAPHIQUE

L'ensemble des 4 zones d'étude, d'une emprise totale d'environ 21 500 m², correspond à des parcelles enherbées pour certaines et des parcelles occupées par des stocks de terres et de voies de circulation, à proximité immédiate des infrastructures de la cimenterie. Ces zones sont localisées dans un environnement mixte agricole et industriel, comprenant des parcelles agricoles et des zones d'exploitation de la cimenterie.

La commune d'AIRVAULT est située au nord-est du département des DEUX SEVRES (79).

La figure suivante présente la localisation de la zone d'étude sur le fond de la carte IGN.

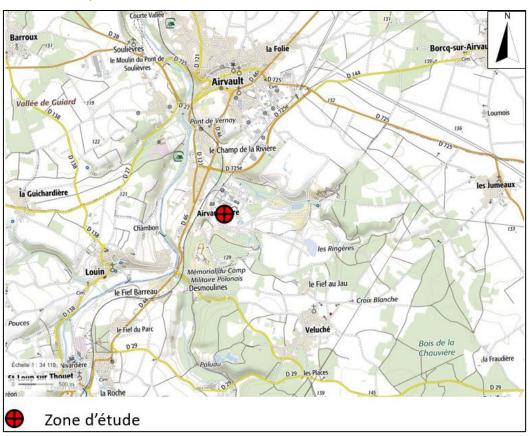


Figure 1 : Localisation du site (Source Géoportail)

2.2. DESCRIPTION DE L'OCCUPATION DES SOLS ET DU PROJET

Actuellement le site d'étude correspond à une ancienne carrière devenue une cimenterie depuis une centaine d'années.

Le projet consiste en la construction d'une nouvelle unité au sein de la cimenterie, sous la forme de plusieurs bâtiments.

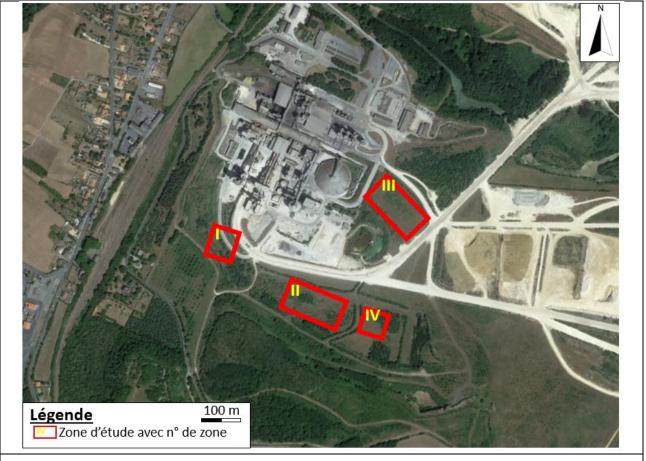


Figure 2 : Vue aérienne de la zone d'étude

3 VISITE DE SITE (A100)

La visite du site a été réalisée le 13 août 2019 par Nicolas LAURENT, ingénieur d'ESIRIS ASO.

Cette visite de site a permis de constater la présence de zones enherbées et vallonnées, de stocks de terres et de voies de circulation, internes à la cimenterie.

Aucune source potentielle de pollution n'a été observée au droit du site.

Une sélection de photographies prises lors de la visite de site est présentée en annexe 2.

4 INVESTIGATIONS SUR LES SOLS (A200)

4.1. REALISATION ET LOCALISATION DES SONDAGES

Les travaux de sondages ont été réalisés du 21 au 23 octobre 2019 par la société ESIRIS ASO. Les sondages S1 à S9, descendus entre 2 et 5 m de profondeur, ont été réalisés à l'aide d'une foreuse équipée en tricône de diamètre 89 mm.

Parallèlement, les demandes de DICT (Déclaration d'Intention de Commencement des Travaux) ont été réalisées par ESIRIS IDF INFRA. L'implantation des sondages n'est pas conforme au plan prévisionnel d'implantation. En effet, le sondage S9 a été rajouté en partie ouest pour mieux quadriller la zone I.

Le plan d'implantation des sondages est présenté sur la figure suivante.

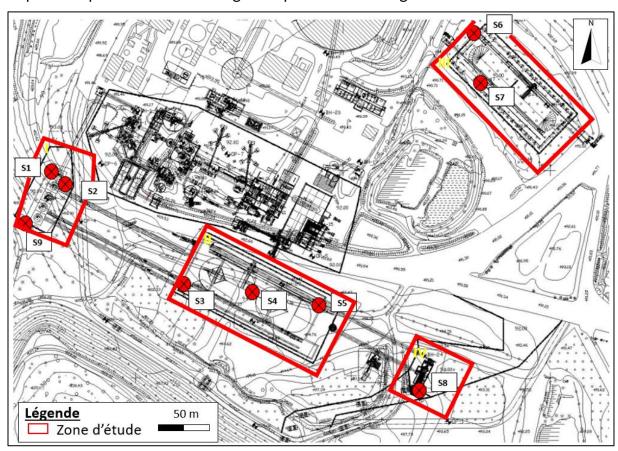


Figure 5: Localisation des sondages réalisés par ESIRIS ASO -octobre 2019

4.2. LITHOLOGIES ET OBSERVATIONS ORGANOLEPTIQUES

Les terrains rencontrés lors des sondages étaient composés essentiellement par des remblais marneux ou calcaires de teinte beige à blanc.

Aucun indice organoleptique n'a été observé lors des sondages. Les coupes des sondages sont présentées en **annexe 3**.

4.3. PRELEVEMENTS ET CONDITIONNEMENT DES ECHANTILLONS DE SOLS

Au droit de l'ensemble des sondages, nous avons réalisé des prélèvements soit par mètre soit par couche géologique.

Diagnostic Environnemental PA19 3587- ind. a

Tous les prélèvements de sols ont été réalisés avec des gants en latex à usage unique et chacun des sondages a fait l'objet d'une étude précise concernant les caractéristiques géologiques et organoleptiques.

Les échantillons ont été conditionnés dans des bocaux fermés hermétiquement. Le flaconnage a été maintenu à une température ≤ 8 °C sur le site et pendant le transport, jusqu'au laboratoire où ils ont été placés en chambre froide jusqu'à l'analyse.

Les prélèvements ont été réalisés conformément à la norme NF ISO 18400-101 à 105 de décembre 2017 relative à l'échantillonnage de sol.

4.4. STRATEGIE, GRILLE D'ANALYSE, CONDITIONNEMENT ET PROCEDURES ANALYTIQUES

Compte tenu de l'historique du site et du projet d'aménagement, les éléments suivants ont été recherchés dans les sols : hydrocarbures (HCT, HAP, BTEX), les solvants (COHV) et les métaux ainsi que des packs ISDI en vue de l'excavation et l'évacuation des terres.

Le tableau présente les paramètres analysés ainsi que les échantillons correspondants. Les procédures analytiques du laboratoire AGROLAB (qui possède les équivalents COFRAC) sont présentées dans le certificat d'analyses du laboratoire, en **annexe 4**.

ECHANTILLONS	PARAMETRES	OBJECTIFS
Ensemble des échantillons analysés	Pack ISDI + Cyanures + 8 métaux + COHV	Identifier les risques sanitaires et caractériser les terres en vue de leur évacuation

Tableau 1 - Grille des paramètres analysés, échantillons et objectifs

5 RESULTATS D'ANALYSES ET INTERPRETATIONS (CODE A270)

5.1. PRECISIONS SUR LES VALEURS DE REFERENCE

Depuis le circulaire du 8 février 2007, il n'existe plus de valeurs réglementaires sur le milieu sol. Les résultats d'analyses sont donc comparés aux valeurs de fond géochimique disponibles dans différentes bases.

- Composés organiques: leur présence dans les sols est généralement due aux activités anthropiques, la valeur de référence est le seuil de détection ou la limite de quantification du laboratoire (LQ),
- Eléments Traces Métalliques: les concentrations sont comparées aux valeurs issues du programme INRA/ASPITET mais également aux valeurs couramment observées dans les sols d'Ile-de-France selon les recommandations de la CIRE IDF.

Certaines teneurs seront également comparées aux critères des arrêtés du 12 décembre 2014 et du 15 février 2016 dans le but de déterminer les filières d'orientation des terres correspondantes.

5.2. RESULTATS D'ANALYSES DANS LES SOLS

Le tableau suivant présente les résultats d'analyses sur les échantillons de sols.

Diagnostic Environnemental PA19 3587- ind. a

Réf. projet			PA19 3587																										
Nom du projet			AIRVAULT																										
Date de début Date du rapport			01/11/2019 13/11/2019																										
Type d'échantillon			SOL																										
Substances	Unité	seuils ISDI	ASPITET INRA gammes de valeurs dans les sols ordinaires	LQ	\$10-1	S1 1-2	\$20-1	S2 1-2	\$3 0-1	\$31-2	53 2-3	53 3-4	\$34-5	\$40-1	S4 1-2	\$44-5	\$5 0-1	S5 1-2	\$60-1	S6 1-2	\$6 3-4	\$7 0-1	S7 1-2	57 2-3	\$8 0-1	S8 1-2	S9 O-1	S9 1-2	59 2-3
Matière sèche	%				93,2	93	89,3	81,8	92,6	90,4	90,3	89,5	89,5	92	94,1	93,5	90,3	94,1	92	92,3	89,9	92,2	91,8	89	89,2	90,3	93,7	90,4	90,8
Analyses physico-chimiques COT Carbone Organique Total	mg/kg	30000		1000	34000	1200	12000	12000	3800	<1000	2800	20000	<1000	25000	1500	<1000	<1000	1700	45000	44000	<1000	<1000	1000	<1000	25000	56000	64000	1300	1500
pH-H2O Métaux sur brut				0,1	8,8	8,7	8,9	10,6	8,9	8,9	8,9	8,9	9	8,5	8,5	8,6	8,9	8,8	8,9	8,8	8,9	8,9	9	9	8,5	9,1	8,8	8,9	8,8
Arsenic (As)	mg/kg		1,0 - 25,0	1	7,5	14	6,8	12	17	19	18	17	19	18	11	12	16	19	13	13	11	9,3	8,3	12	12	21	3,9	15	9,8
Cadmium (Cd) Chrome (Cr)	mg/kg mg/kg		0,05 - 0,45 10,0 - 90,0	0,1 0,2	28	0,2 25	0,4 27	29	0,2 21	<0,2 25	0,1 23	0,1 20	0,1 20	<0,1 20	<0,1 11	<0,1 13	<0,1 19	0,1 24	0,1 19	<0,1 17	<0,1 12	<0,1 19	0,1 20	0,1 16	0,2 32	<0,1 23	0,5 25	<0,1 17	0,2 19
Cuivre (Cu) Mercure (Hg)	mg/kg mg/kg		2,0 - 20,0	0,2 0,05	6 <0,05	2,8 <0,05	<0,05	8,5 0,07	2,9 <0,05	3,2 <0,05	2,5 <0,05	2,3 <0,05	2,5 <0,05	2,2 <0,05	0,7 <0,05	1,2 <0,05	2,5 <0,05	3 <0,05	2,1 <0,05	2,4 <0,05	1,2 <0,05	0,4 <0,05	0,6 <0,05	1,4 <0,05	13 <0,05	1,7 <0,05	3,6 <0,05	2 <0,05	2,6 <0,05
Nickel (Ni)	mg/kg		2,0 - 60,0	0,5	12	6,8	12	13	9,1	7,2	6,9	6,6	6,8	6,6	3,6	4	7,1	7,6	9,5	8,7	5,6	5,9	6,1	6,5	22	6,2	6,5	7,3	7,8
Plomb (Pb) Zinc (Zn)	mg/kg mg/kg		9,0 - 50,0 10,0 - 100,0	0,5 1	8,8 46	7,2 14	7,6 41	26 47	7,4 17	7,8 13	6,4 13	6,3 14	6,9 14	7,6 14	6,2 4,6	6,1 6,3	6,4 15	11 15	7,3 22	6,7 19	5,5 10	4,5 8,5	4 14	7,3 12	71 51	8,2 11	4,7 24	7,1 13	8,8 20
Hydrocarbures totaux C10-C40 Fraction C10-C12	mg/kg			4	<4.0	<4,0	<4,0	<4,0	<4.0	<4,0	<4,0	<4,0	<4.0	<4.0	<4.0	<4,0	<4,0	<4,0	<4.0	<4,0	<4,0	<4.0	<4.0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0
Fraction C12-C16	mg/kg			4	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	6,2
Fraction C16-C20 Fraction C20-C24	mg/kg mg/kg			2	<2,0 <2,0	<2,0 2,6	<2,0 <2,0	2,6 4,9	<2,0 <2,0	<2,0 <2,0	<2,0 <2,0	<2,0 <2,0	<2,0 2,5	<2,0 <2,0	<2,0 <2,0	<2,0 3,6	<2,0 <2,0	4,9 9,2	<2,0 <2,0	<2,0 <2,0	<2,0 <2,0	<2,0 2,7	<2,0 <2,0	<2,0 <2,0	6,2 8	<2,0 <2,0	<2,0 <2,0	<2,0 <2,0	4,5 4,5
Fraction C24-C28 Fraction C28-C32	mg/kg			2	3,4	4 4,2	2,8 3,4	8,3 12	2,7	2,3 2,5	2,5 2,7	3,1 3,2	5,1 5,1	3,3	3,5 3,7	6,3 6,6	<2,0 <2,0	13,4 16	<2,0 <2,0	<2,0 <2,0	<2,0 <2,0	4,8 4.9	2,6 3,3	2,2 2,8	7,4 6,6	<2,0 <2,0	<2,0 <2,0	<2,0 <2,0	6,3 6,5
Fraction C32-C36	mg/kg mg/kg			2	2,7	2,8	2,5	7,2	<2,0	<2,0	2,4	2,2	3,2	2,3	2,6	4,5	<2,0	10	<2,0	<2,0	<2,0	3,1	<2,0	<2,0	3,7	<2,0	<2,0	<2,0	4,3
Fraction C36-C40 Hydrocarbures totaux C10-C40	mg/kg mg/kg	500		20	<2,0 <20,0	<2,0 <20,0	<2,0 <20,0	3,7 40	<2,0 <20,0	<2,0 <20,0	<2,0 <20,0	<2,0 <20,0	<2,0 <20,0	<2,0 <20,0	<2,0 <20,0	<2,0 25,3	<2,0 <20,0	3,2 58,2	<2,0 <20,0	<2,0 <20,0	<2,0 <20,0	<2,0 <20,0	<2,0 <20,0	<2,0 <20,0	<2,0 34	<2,0 <20,0	<2,0 <20,0	<2,0 <20,0	<2,0 34,3
Composés aromatiques Benzène				0,05	<0.050	<0,050	<0,050	<0.050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0.050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050
Toluène	mg/kg mg/kg			0,05	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	0,065	<0,050	<0,050	<0,050	<0,050
Ethylbenzène m,p-Xylène	mg/kg mg/kg			0,05 0,1	<0,050 <0,10	<0,050 <0,10	<0,050 <0,10	<0,050 <0,10	<0,050 <0,10	<0,050 <0,10	<0,050 <0,10	<0,050 <0,10	<0,050 <0,10	<0,050 <0,10	<0,050 <0,10	<0,050 <0,10	<0,050 <0,10	<0,050 <0,10	<0,050 <0,10	<0,050 <0,10	<0,050 <0,10	<0,050 <0,10	<0,050 <0,10	<0,050 <0,10	<0,050 <0,10	<0,050 <0,10	<0,050 <0,10	<0,050 <0,10	<0,050 <0,10
o-Xylène Somme Xylènes	mg/kg			0,05	<0,050 n.d.	<0,050 n.d.	<0,050 n.d.	<0,050 n.d.	<0,050 n.d.	<0,050 n.d.	<0,050 n.d.	<0,050 n.d.	<0,050 n.d.	<0,050 n.d.	<0,050 n.d.	<0,050 n.d.	<0,050 n.d.	<0,050 n.d.	<0,050 n.d.	<0,050 n.d.	<0,050 n.d.	<0,050 n.d.		<0,050 n.d.	<0,050 n.d.	<0,050 n.d.	<0,050 n.d.	<0,050 n.d.	<0,050 n.d.
BTEX total	mg/kg mg/kg	6			n.d.	n.a. n.d.	n.a. n.d.	n.d.	n.a. n.d.	n.a. n.d.	n.a. n.d.	n.a. n.d.	n.a. n.d.	n.a. n.d.	n.a. n.d.	n.a. n.d.	n.a. n.d.	n.a. n.d.	n.a. n.d.	n.a. n.d.	n.a. n.d.	n.d.	n.a. n.d.	n.a. n.d.	0,065	n.a. n.d.	n.a. n.d.	n.a. n.d.	n.d.
COHV Chlorure de Vinyle	mg/kg			0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02
Dichlorométhane Trichlorométhane	mg/kg mg/kg			0,05 0,05	<0,05 <0.05	<0,05	<0,05 <0,05	<0,05 <0,05	<0,05	<0,05 <0.05	<0,05 <0,05	<0,05 <0,05	<0,05	<0,05 <0.05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0.05	<0,05	<0,05 <0.05	<0,05 <0,05	<0,05 <0,05	<0,05 <0.05	<0,05 <0.05	<0,05 <0,05	<0,05	<0,05 <0.05	<0,05 <0.05	<0,05 <0.05
Tétrachlorométhane	mg/kg			0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Trichloroéthylène Tétrachloroéthylène	mg/kg mg/kg			0,05	<0,05 <0.05	<0,05 <0.05	<0,05 <0.05	<0,05 <0,05	<0,05 <0.05	<0,05 <0.05	<0,05 <0.05	<0,05 <0.05	<0,05 <0.05	<0,05 <0.05	<0,05 <0.05	<0,05 <0.05	<0,05 <0.05	<0,05 <0.05	<0,05 <0.05	<0,05 <0.05	<0,05 <0.05	<0,05 <0.05	<0,05 <0.05	<0,05 <0.05	<0,05 <0.05	<0,05 <0.05	<0,05 <0.05	<0,05 <0.05	<0.05
1,1,1-Trichloroéthane 1,1,2-Trichloroéthane	mg/kg			0,05 0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0.05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0.05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0.05	<0,05 <0,05	<0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05
1,1-Dichloroéthane	mg/kg mg/kg			0,1	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,05 <0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
1,2-Dichloroéthane cis-1,2-Dichloroéthène	mg/kg mg/kg			0,05 0,025	<0,05 <0,025	<0,05 <0,025	<0,05 <0.025	<0,05 <0,025	<0,05 <0,025	<0,05 <0,025	<0,05 <0,025	<0,05 <0,025	<0,05 <0.025	<0,05 <0,025	<0,05 <0,025	<0,05 <0,025	<0,05 <0.025	<0,05 <0,025	<0,05 <0.025	<0,05 <0,025	<0,05 <0,025	<0,05 <0,025	<0,05 <0,025	<0,05 <0,025	<0,05 <0,025	<0,05 <0,025	<0,05 <0,025	<0,05 <0,025	<0,05 <0,025
1,1-Dichloroéthylène	mg/kg			0,1 0,025	<0,10 <0.025	<0,10 <0.025	<0,10 <0.025	<0,10 <0.025	<0,10	<0,10 <0,025	<0,10 <0.025	<0,10 <0.025	<0,10 <0.025	<0,10 <0.025	<0,10	<0,10 <0.025	<0,10 <0.025	<0,10 <0.025	<0,10 <0.025	<0,10 <0,025	<0,10 <0.025	<0,10	<0,10	<0,10	<0,10 <0.025	<0,10	<0,10 <0.025	<0,10 <0,025	<0,10
Trans-1,2-Dichloroéthylène Somme des COHV	mg/kg mg/kg			0,025	n.d.	n.d.	n.d.	n.d.	<0,025 n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	<0,025 n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	<0,025 n.d.	n.d.	<0,025 n.d.	n.d.	n.d.	n.d.	n.d.	<0,025 n.d.
Hydrocarbures Aromatiques Pol Naphtalène	lycycliques mg/kg			0,05	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050
Acénaphtylène Acénaphtène	mg/kg mg/kg			0,05 0,05	<0,050 <0.050	<0,050 <0.050	<0,050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0,050	<0,050 <0.050	<0,050	<0,050 <0.050	<0,050 <0.050	<0,050 <0,050
Fluorène	mg/kg			0,05	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050
Phénanthrène Anthracène	mg/kg mg/kg			0,05 0,05	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	0,37 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050
Fluoranthène Pvrène	mg/kg mg/kg			0,05 0,05	<0,050 <0.050	<0,050 <0.050	0,062 <0.050	0,068 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050	0,082	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	0,48	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050
Benzo(a)anthracène	mg/kg			0,05	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	0,15	<0,050	<0,050	<0,050	<0,050
Chrysène Benzo(b)fluoranthène	mg/kg mg/kg			0,05 0,05	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	0,12 0,16	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050
Benzo(k)fluoranthène Benzo(a)pyrène	mg/kg mg/kg			0,05	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0,050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	0,074	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050
Dibenzo(a,h)anthracène	mg/kg			0,05	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050
Benzo(g,h,i)pérylène Indéno(1,2,3-cd)pyrène	mg/kg mg/kg			0,05 0,05	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	0,085 0,11	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050
HAP (6 Borneff) - somme Somme HAP (VROM)	mg/kg mg/kg				n.d. n.d.	n.d. n.d.	0,062	0,068	n.d. n.d.	n.d. n.d.	n.d. n.d.	n.d. n.d.	n.d. n.d.	n.d. n.d.	n.d. n.d.	n.d. n.d.	n.d. n.d.	n.d. n.d.	n.d. n.d.	0,082 0,082	n.d. n.d.	n.d. n.d.	n.d. n.d.	n.d. n.d.	1 1,48	n.d. n.d.	n.d. n.d.	n.d. n.d.	n.d. n.d.
HAP (EPA) - somme Polychlorobiphényles	mg/kg	50			n.d.	n.d.	0,062	0,068	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0,148	n.d.	n.d.	n.d.	n.d.	2,01	n.d.	n.d.	n.d.	n.d.
PCB (28)	mg/kg			0,001	<0,001										<0,001					<0,001					<0,001		<0,001		<0,001
PCB (52) PCB (101)	mg/kg mg/kg			0,001 0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	0,001 0,002	<0,001	<0,001 <0,001	<0,001 <0,001	<0,001
PCB (118) PCB (138)	mg/kg mg/kg			0,001 0,001	<0,001 <0,001	<0,001 <0.001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0.001	<0,001 <0,001	<0,001	<0,001 <0,001	<0,001 <0,001	<0,001	<0,001 <0,001	0,002	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001						
PCB (153)	mg/kg			0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	0,003	<0,001	<0,001	<0,001	<0,001
PCB (180) Somme 6 PCB	mg/kg mg/kg			0,001	<0,001 n.d.	<0,001 n.d.	<0,001 n.d.	<0,001 n.d.	<0,001 n.d.	<0,001 n.d.	<0,001 n.d.	<0,001 n.d.	<0,001 n.d.	<0,001 n.d.	<0,001 n.d.	<0,001 n.d.	<0,001 n.d.	<0,001 n.d.	<0,001 n.d.	<0,001 n.d.	<0,001 n.d.	<0,001 n.d.	<0,001 n.d.	<0,001 n.d.	0,001 0,01	<0,001 n.d.	<0,001 n.d.	<0,001 n.d.	<0,001 n.d.
Somme 7 PCB (Ballschmiter) Analyses sur éluats après lixiviat	mg/kg	1			n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0,012	n.d.	n.d.	n.d.	n.d.
Rapport L/S cumulé	ml/g			0,1	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10 8,7
pH Température	°C			0	8,8 19,3	9 19,6	8,8 19,1	11,6 20,1	8,9 19,2	9 19,7	9,1 18,8	9 18,8	9,2 19,2	8,7 18,7	8,8 19,5	8,5 19,4	9,1 19,3	8,9 18,9	8,8 19,1	9 19,4	8,9 19,2	9,1 18,9	8,7 19,5	9,1 19,6	8,6 19	9,1 19,4	8,8 19,1	9,2 19,3	19,3
Conductivité électrique Fractions cumulées	μS/cm			5	110	130	120	840	60	57,3	57,4	55,9	57,5	180	130	140	71,1	75,8	64,6	62,2	57,8	59,7	53,5	63,5	140	51,8	69,3	59	74,1
Antimoine cumulé (var. L/S)	mg/kg	0,06 0,5		0,05			0 - 0,05				0 - 0,05	0 - 0,05			0-0,05					0 - 0,05				0 - 0,05 0 - 0,05	0,07		0 - 0,05		0 - 0,05
Arsenic cumulé (var. L/S) Baryum cumulé (var. L/S)	mg/kg mg/kg	20		0,05 0,1	0-0,1	0 - 0,1	0 - 0,05 0,17	0,16	0-0,1	0-0,1	0-0,1	0-0,1	0 - 0,1	0 - 0,05 0 - 0,1	0-0,1	0 - 0,1	0-0,1	0,06 0 - 0,1	0-0,1	0 - 0,05 0 - 0,1	0-0,1	0-0,1	0-0,1	0 - 0,1	0-0,1	0-0,1	0 - 0,05 0 - 0,1	0-0,1	0 - 0,05 0 - 0,1
Cadmium cumulé (var. L/S) Chlorures cumulé (var. L/S)	mg/kg mg/kg	0,04 800		0,001	0 - 0,001 18	0-0,001 19	0 - 0,001 17	0 - 0,001 17	0-0,001 13	0-0,001		0-0,001 19	0 - 0,001 15	0 - 0,001 18	0-0,001 19	0 - 0,001 17	0 - 0,001 23	0 - 0,001 19	0 - 0,001 17	0-0,001 14	0 - 0,001 16	0 - 0,001 11	0 - 0,001 16	0 - 0,001 23	0 - 0,001 19	0-0,001	0 - 0,001 21	0-0,001 21	0 - 0,00
Chrome cumulé (var. L/S)	mg/kg	0,5		0,02	0 - 0,02	0-0,02	0,03	0,16	0-0,02	0 - 0,02	0 - 0,02	0 - 0,02	0,03	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0,02	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0-0,02	0 - 0,02
COT cumulé (var. L/S) Cuivre cumulé (var. L/S)	mg/kg mg/kg	500 2		10 0,02	10 0 - 0,02	0 - 10 0 - 0,02	0 - 10 0,02	0 - 10 0,02	0 - 10 0 - 0,02	0 - 10 0 - 0,02	0 - 10 0 - 0,02	0 - 10	16 0 - 0,02	0 - 10	0-0,02	0 - 10 0 - 0,02	0 - 10 0 - 0,02	11 0-0,02	0 - 10 0 - 0,02	0 - 10		0 - 10 0 - 0,02	0 - 10	0 - 10 0 - 0,02	30 0,08	0 - 10 0 - 0,02	12 0 - 0,02	0 - 10 0 - 0,02	0 - 0,02
Cyanures cumulé (var. L/S) Fluorures cumulé (var. L/S)	mg/kg	10		0,01	0-0,01	0-0,01	0-0,01	0-0,01	0-0,01	0-0,01	0-0,01	0-0,01	0-0,01	0-0,01	0-0,01	0-0,01	0-0,01	0-0,01	0-0,01	0-0,01		0-0,01	0-0,01	0-0,01	0-0,01	0-0,01	0-0,01	0-0,01	0-0,01
Fraction soluble cumulé (var. L/S)		4000		1000		0 - 1000	0 - 1000	3400	0 - 1000		0 - 1000	0 - 1000		1000		0 - 1000		0-1000	0 - 1000	0 - 1000	0-1000			0-1000	1100	0 - 1000	0-1000	0-1000	0 - 1000
Indice phénol cumulé (var. L/S) Mercure cumulé (var. L/S)	mg/kg mg/kg	1 0,01		0,1 0,0003	0-0,1	0 - 0,1	0 - 0,1 0 - 0,0003	0-0,1	0 - 0,1 0 - 0,0003	0-0,1	0 - 0,1 0 - 0,0003	0 - 0,1	0 - 0,1 0 - 0,0003	0 - 0,1 0 - 0,0003	0 - 0,1 0 - 0,0003	0-0,1													
Molybdène cumulé (var. L/S) Nickel cumulé (var. L/S)	mg/kg	0,5 0,4		0,05 0,05	0,06 0 - 0,05	0,06	0,1 0 - 0,05	0 - 0,05 0 - 0,05	0-0,05	0 - 0,05	0 - 0,05 0 - 0,05	0 - 0,05	0 - 0,05	0,07	0-0,05	0 - 0,05 0 - 0,05		0 - 0,05 0 - 0,05	0 - 0,05 0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05 0 - 0,05	0,06	0 - 0,05	0 - 0,05	0 - 0,05 0 - 0,05	0 - 0,05
Plomb cumulé (var. L/S)	mg/kg mg/kg	0,5		0,05	0 - 0,05	0-0,05	0 - 0,05	0 - 0,05	0-0,05	0 - 0,05	0 - 0,05	0-0,05	0 - 0,05	0 - 0,05	0-0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05
		0,1		0,05	0 - 0,05	0-0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0-0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05		0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0-0,05	0 - 0,05
Sélénium cumulé (var. L/S) Sulfates cumulé (var. L/S)	mg/kg mg/kg	1000		50	190	380	190	1100	0 - 50	0 - 50	0 - 50	0 - 50	0 - 50	570	350	420	0 - 50	0 - 50	0 - 50	0 - 50	0 - 50	0 - 50	0 - 50	59	260	0 - 50	0 - 50	0 - 50	0 - 50

D'un point de vue sanitaire

Les résultats d'analyses des sols ont mis en évidence la présence :

- De traces en métaux sur 5 des 25 échantillons analysés, spécifiquement en :
 - Cadmium, comprises entre 0,5 et 0,9 mg/kg, sur les échantillons S1 (0-1 m), S2 (1-2 m) et S9 (0-1 m), supérieures à la gamme de valeurs ASPITET (0,05 0,45 mg/kg),
 - Cuivre, de 22 mg/kg, sur l'échantillon S2 (0-1 m), supérieure à la gamme de valeurs ASPITET (2,0 - 20,0 mg/kg,
 - Plomb, de 71 mg/kg, sur l'échantillon S8 (0-1 m), supérieure à la gamme de valeurs ASPITET (9,0 – 50,0 mg/kg),
- Des concentrations pour la somme des HCT (HCT_{C10-C40}) sur 5 des 25 échantillons analysés, comprises entre 25,3 et 58,2 mg/kg, sur les échantillons S2 (1-2 m), S4 (4-5 m), S5 (1-2 m), S8 (0-1 m) et S9 (2-3 m), supérieures à la limite de quantification du laboratoire (20 mg/kg),
- Une concentration en HCT semi-volatils (HCT_{C12-C16}) sur 1 des 25 échantillons analysés, de 6,2 mg/kg sur l'échantillon S9 (2-3 m), supérieure à la limite de quantification du laboratoire (4 mg/kg),
- D'une concentration pour la somme des 16 HAP sur 4 des 25 échantillons analysés, comprises entre 0,062 et 2,01 mg/kg sur les échantillons S2(0-1 m), S2 (1-2 m), S6 (1-2 m) et S8 (0-1 m), supérieures à la limite de quantification du laboratoire (0,05 mg/kg),
- D'une concentration pour la somme des BTEX sur 1 des 25 échantillons analysés, spécifiquement en toluène de 0,065 mg/kg sur l'échantillon S8 (0-1 m), supérieure à la limite de quantification du laboratoire (0,05 mg/kg),
- D'une concentration pour la somme des 7 PCB sur 1 des 5 échantillons analysés, de 0,012 mg/kg, supérieure à la limite de quantification du laboratoire (0,001 mg/kg).

Ces résultats ont mis en évidence l'absence de concentrations HCT volatils et COHV sur tous les échantillons analysés.

D'un point de vue des éventuelles excavations de terres

Les résultats d'analyses des sols ont mis en évidence :

- La présence d'un dépassement en antimoine sur éluats (0,07 mg/kg) sur l'échantillon S8 (0-1 m), supérieure à la valeur seuil de l'arrêté du 12 décembre 2014 (0,06 mg/kg),
- La présence de dépassements en COT sur brut (compris entre 34 000 et 64 000 mg/kg) sur les échantillons S1 (0-1 m), S6 (0-1 m), S6 (1-2 m), S8 (1-2 m) et S9 (0-1 m), supérieures à la valeur seuil de l'arrêté du 12 décembre 2014 (30 000 mg/kg). Néanmoins, la valeur en COT sur éluats de ces mêmes échantillons respectant le seuil de l'arrêté du 12 décembre 2014, l'anomalie sur brut ne sera pas déterminante dans la sélection de la filière,
- La présence d'un dépassement sulfates sur éluats (1 100 mg/kg) sur l'échantillon S2 (1-2 m), supérieure à la valeur seuil de l'arrêté du 12 décembre 2014 (1 000 mg/kg). Néanmoins, la valeur en fraction soluble de ce même échantillon respectant le seuil de l'arrêté du 12 décembre 2014, l'anomalie sur brut ne sera pas déterminante dans la sélection de la filière,
- L'absence d'autres anomalies vis-à-vis des critères de l'arrêté du 12 décembre 2014.

5.3. INTERPRETATIONS DES RESULTATS

Les résultats d'analyses ont permis d'observer, d'un point de vue sanitaire, des traces en métaux, HCT (dont les semi-volatils), BTEX, HAP et PCB. Néanmoins, certaines ne sont pas retenues au regard des concentrations et des aménagements projetés et ne sont donc pas représentatives de la qualité globale des zones d'étude.

Ainsi, les terres présentant des concentrations en substances volatiles (HCT semivolatils et toluène) pourront être réutilisées uniquement dans le cadre d'aménagement extérieurs (espaces paysagers, parkings extérieurs ou voiries). Les terres présentant notamment des traces en métaux ne pourront être réutilisées qu'à la condition d'être recouverte par de la terre végétale sur 30 cm d'épaisseur, couche d'enrobé ou dalle en béton afin de s'affranchir de risques sanitaires (ingestion de sol, inhalation de poussières et contact cutané).

Les résultats d'analyses ont également mis en évidence la présence d'un unique dépassement retenu en antimoine sur éluats, vis-à-vis des critères de l'arrêté du 12 décembre 2014.

Ainsi les terres, pouvant être éventuellement excavées et évacuées dans le cadre de a construction d'une nouvelle unité de la cimenterie, et caractérisées par l'anomalie en antimoine sur éluats, sont redevables a minima d'une Installation de Stockage de Déchets Inertes avec arrêté spécifique (ISDI-AS). Cette installation de stockage accepte les terres présentant des dépassements jusqu'à 3 fois les seuils de l'arrêté du 12 décembre 2014.

Les terres ne présentant pas d'anomalies par rapport à l'arrêté du 12 décembre 2014 pourront être évacuées en Installation de Stockage de Déchets Inerts (ISDI).

Il a donc été proposé plusieurs filières, au regard des résultats d'analyses :

- une filière de type Installation de Stockage de Déchets Inertes (ISDI) au prix de 12 € HT/m³ foisonné, sous réserve d'acceptation de ce centre,
- une filière de type Installation de Stockage de Déchets Inertes avec arrêté spécifique (ISDI-AS) au prix de 30 € HT/tonne, sous réserve d'acceptation de ce centre.

	S1 0-1	S1 1-2	S2 0-1	S2 1-2	S3 0-1	S3 1-2	S3 2-3	53 3-4	S3 4-5	S4 0-1	S4 1-2	S4 4-5	S5 0-1
Analyses responsables de l'orientation des déblais	COT sur brut*	-	-	Sulfates sur éluats*	-	-	-	-	-	-	-	-	-
Indice organoleptique suspect	-	-	-	-	-	-	-	-	-	-	-	-	-
Filière d'évacuation	ISDI	ISDI	ISDI	ISDI	ISDI	ISDI	ISDI	ISDI	ISDI	ISDI	ISDI	ISDI	ISDI
	S5 1-2	S6 0-1	S6 1-2	S6 3-4	S7 0-1	S7 1-2	S7 2-3	S8 0-1	S8 1-2	S9 0-1	S9 1-2	59 2-3	Ì
Analyses responsables de l'orientation des déblais	\$5 1-2 -	S6 0-1 COT sur brut*	S6 1-2 COT sur brut*	56 3-4	S7 0-1	S7 1-2 -	57 2-3	S8 0-1 Antimoine sur éluats	S8 1-2 COT sur brut*	S9 0-1 COT sur brut*	59 1-2	59 2-3 -	
de l'orientation des		COT sur	COT sur	56 3-4 - -	\$7 0-1 - -			Antimoine	COT sur	COT sur		59 2-3	

Tableau 2 : Tableau des filières d'évacuation

Ces prix sont donnés à titre indicatif, selon les prix et pratiques portés à notre connaissance en 2019 en fonction des différentes filières en lle de France. Il revient au maître d'ouvrage de les faire préciser lors de la sélection du centre de stockage.

Une cartographie des résultats d'analyses est présentée en annexe 5.

Diagnostic Environnemental PA19 3587 - ind. a

6 SCHEMA CONCEPTUEL

Le schéma conceptuel permet d'établir sur la base des investigations réalisées :

- les sources de pollution
- les voies de transfert
- les cibles potentielles
- les milieux d'exposition

Sources de pollution

Au terme de ces investigations sur les sols, des traces en métaux, HAP, HCT (dont les semi-volatils), BTEX et PCB ont été observées. Le projet consiste en la construction d'une nouvelle unité au sein de la cimenterie, impliquant une réutilisation des terres.

Voies de transferts

Les voies de transferts des pollutions identifiées dans les sols restent limitées :

- vers la nappe : la nappe, non investiguée, ne sera pas utilisée dans le cadre du projet d'aménagement,
- vers l'air du sol : Des concentrations en éléments volatils et semi-volatils ont été observées et seront retenues dans le cas où les terres présentant ces anomalies seraient réutilisées au droit des futurs bâtiments,
- vers les poussières issues du sol : des teneurs en métaux, HAP, HCT et PCB ont été détectées. Au regard de la réutilisation possible, ces teneurs, bien qu'à l'état de traces, seront retenues si non recouvertes.

Enjeux à considérer

Au regard du projet d'aménagement, à savoir la construction d'une nouvelle unité au sein de la cimenterie, la zone d'étude pourra accueillir des adultes travailleurs.

Voies d'exposition

Les voies d'exposition des polluants dans l'organisme sont de trois types : inhalation, ingestion et contact cutané. Le tableau suivant liste toutes les voies d'exposition possibles dans notre étude.

Tableau 3 - Récapitulatif des voies d'exposition possible

Mode d'exposition	Sélection	Raison de la sélection ou de l'exclusion
inhalation de polluants sous forme gazeuse issus du sol et de la nappe	oui	Présence de substances volatiles et semi-volatiles retenues au droit des bâtiments projetés
inhalation de polluant adsorbé sur les poussières du sol	oui	Présence de polluants retenus dans le cadre du projet si non recouverts
inhalation de vapeur d'eau polluée	non	Pas d'investigations sur la nappe
ingestion directe de sol et/ou de poussières	oui	Présence de polluants retenus dans le cadre du projet si non recouverts
ingestion d'aliments d'origine végétale cultivés sur le site	non	Pas de culture
ingestion d'aliments d'origine animale à partir d'animaux élevés, chassés ou pêchés sur le site	non	Pas d'élevage
ingestion d'eau contaminée	non	Eau de la nappe n'est pas
absorption cutanée d'eau contaminée	non	utilisée au droit du site
absorption cutanée de sols et/ou de poussières	non	Risque faible
absorption cutanée de polluant sous forme gazeuse	non	Risque faible

7 CONCLUSION ET RECOMMANDATIONS

La société CIMENTS CALCIA a mandaté ESIRIS IDF INFRA et ESIRIS ASO pour la réalisation d'un diagnostic de pollution des sols dans le cadre du projet de construction d'une nouvelle unité au sein de la cimenterie, basée à AIRVAULT (79).

Dans le cadre de ce diagnostic, des investigations sur les sols ont eu lieu. Neuf sondages, descendus entre 2 et 5 m de profondeur, ont été réalisés. Les analyses de sol ont permis de mettre en évidence la présence de traces en métaux, HCT (dont les semi-volatils), HAP, BTEX et PCB. Un dépassement en antimoine sur éluats vis-à-vis des critères de l'arrêté du 12 décembre 2014 a été également observé.

Au regard des concentrations mesurées et de l'éventualité de réutiliser ces terres dans le cadre du projet de construction d'une nouvelle unité au sein de la cimenterie, les concentrations en éléments volatils et semi-volatils seront retenues si les terres en présentant sont réutilisées au droit des bâtiments projetés. Les concentrations en métaux, HAP et PCB seront retenues si les terres en présentant ne sont pas recouvertes.

D'un point de vue sanitaire, au vu des résultats d'analyses et du projet (reconstruction d'une nouvelle unité au sein d'une cimenterie), ESIRIS IDF INFRA recommande :

- la mise en place d'un recouvrement au droit des zones de pleine terre faisant l'objet de remblaiement par des terres présentant des traces en métaux notamment, de type terre végétale sur 30 cm d'épaisseur, couche d'enrobé ou dalle en béton afin de s'affranchir de risques sanitaires (ingestion de sol, inhalation de poussières et contact cutané),
- l'utilisation des terres présentant des substances en éléments volatils et semivolatils, uniquement au droit des espaces extérieurs (parkings extérieurs, voiries et espaces paysagers).

Nous n'émettons aucune autre recommandation particulière vis-à-vis du projet d'aménagement de la cimenterie.

D'un point de vue des éventuelles excavations et évacuations dans le cadre du projet, les terres impactées en antimoine sur éluats sont redevables a minima d'une Installation de Stockage de Déchets Inertes avec arrêté spécifique (ISDI-AS), au prix de 30 € HT/tonne, hors transport. Cette installation de stockage accepte les terres présentant des dépassements jusqu'à 3 fois les seuils de l'arrêté du 12 décembre 2014.

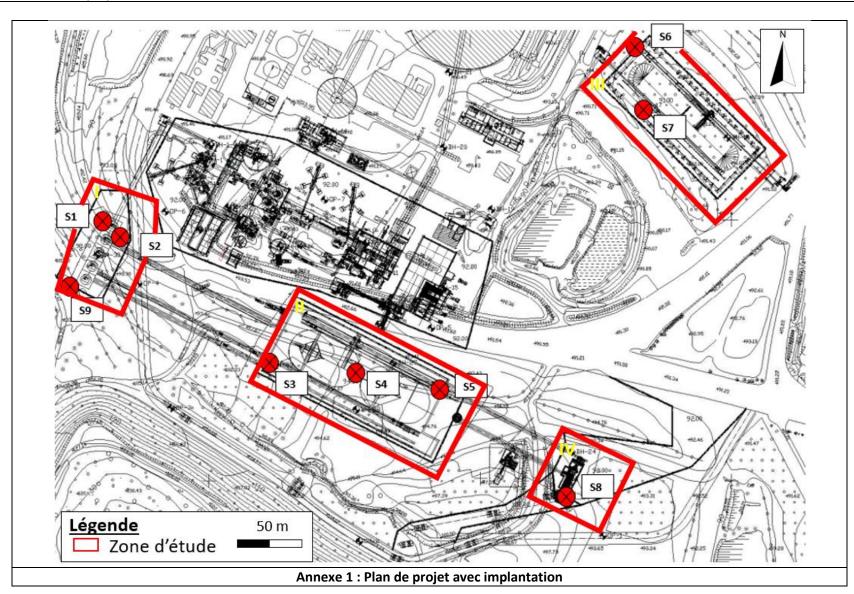
Les terres ne présentant pas d'anomalies par rapport à l'arrêté du 12 décembre 2014 pourront être évacuées en Installation de Stockage de Déchets Inerts (ISDI), au prix de 12 € HT/m³ foisonné, hors transport.

8 LIMITES D'UTILISATION D'UNE ETUDE ENVIRONNEMENT

Une étude de pollution du milieu souterrain a pour seule fonction de renseigner sur la qualité des sols, des eaux ou des déchets contenus dans le milieu souterrain.

Les reconnaissances de sol procèdent par sondages ponctuels suivant soit un maillage régulier, soit de façon orientée en fonction des informations historiques ou bien en fonction des installations. Les résultats ne sont pas rigoureusement extrapolables à l'ensemble du site. Il persiste des aléas comme les hétérogénéités possibles en milieu naturel ou artificiel. De même, l'inaccessibilité de certaines zones peut entraîner un défaut d'observation non imputable à notre société.

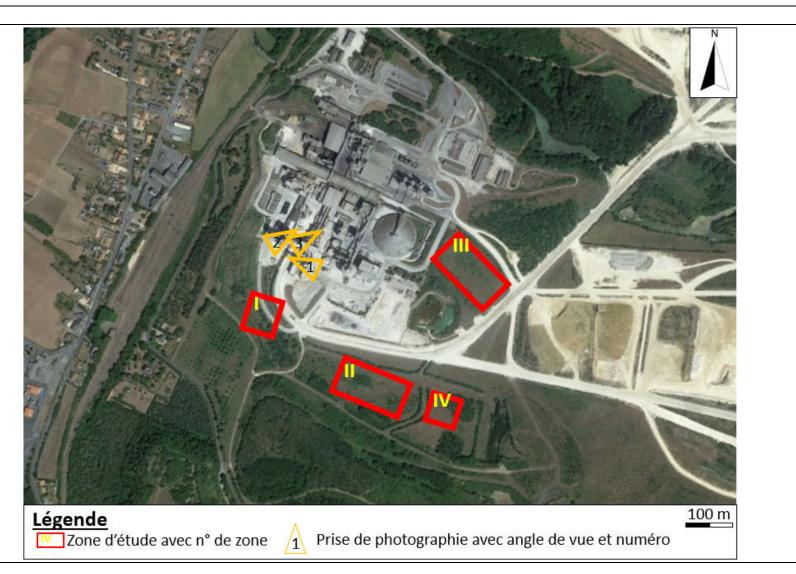
Les études rendent compte d'un état du milieu à un instant donné, des évènements ultérieurs au diagnostic peuvent modifier la situation. Ces études rendent comptent également d'un projet donné, toute modification du projet nécessitera une nouvelle étude.


Le présent rapport et ses annexes constituent en un tout indissociable. La mauvaise utilisation qui pourrait être faite suite à une communication ou reproduction partielle ne saurait engager ESIRIS Group – ESIRIS IDF Infra.

PA19 3587

AIRVAULT (79)

Annexe 1 : Plan de projet



PA19 3587

AIRVAULT (79)

Annexe 2 : Visite du site d'étude

PA19 3587

AIRVAULT (79)

Annexe 2 : Visite du site d'étude

Photographie 1 : voies de circulation

Photographie 2 : Remblaiement et stock de terres

Photographie 3 : Stock de terres, parcelle enherbée et point d'eau

P019.0043.5 Client

Ciments Calcia

GSM - Airvault

Chantier

Forage S1

Type de forage Date de début

22/10/2019 10:11:13

Date de fin

22/10/2019 10:11:13

Χ

Altitude (NGF)

Prof. (m)	Figuré	Prof. (m)	Description	Outils de forage
0	¥¥¥¥			
0.5 =			Remblai calcaire	Tricône ø89 mm
1.5 =				Tricône
2 -		- 2 -		_
2.5				
3 -				
3.5				
4.5				
4.5				
5.5				
6 -				
6.5				
7 -				
7.5				
8 -				
8.5 ·				
9.5				
10 -				
10.5				
11 -				

Dossier P019 0043 5

P019.0043.5 Client

Ciments Calcia

Chantier GSM - Airvault S2 Type de forage

Forage

Date de début 22/10/2019 10:11:13 Χ

Altitude (NGF)

Date de fin

Prof. (m)	Figuré	Prof. (m)	Description	Outils de forage
0	¥¥¥¥			
0.5 =			Remblai calcaire	Tricône ø89 mm
1.5				Tricône
2 -		- 2 -		
2.5				
3 -				
3.5				
4 -				
4.5				
5 -				
5.5 -				
6.5				
7 -				
7.5				
8 -				
8.5				
9 -				
9.5				
10 -				
10.5				
11 -				

Dossier P019.0043.5

Ciments Calcia

Client

Chantier

S3 Type de forage Date de début

Forage

22/10/2019 10:11:13

Χ

Altitude (NGF)

GSM - Airvault Date de fin

Prof. (m)	Figuré	Prof. (m)	Description	Outils de forage
0 0.5 - 1 - 1.5 - 2 - 2.5 - 3 - 4 - 4.5 -		- 5 -	Remblai marno-calcaire	Tricône ø89 mm
5.5				
6 -				
6.5				
7 -				
7.5				
8 -				
8.5				
9 -				
9.5				
10 -				
10.5 •				
11 -				

Client

Chantier

P019.0043.5

S4 Type de forage Ciments Calcia Date de début

Forage

22/10/2019 10:11:13

22/10/2019 10:11:13

GSM - Airvault Date de fin

Altitude (NGF)

Χ

Prof. (m)	Figuré	Prof. (m)	Description	Outils de forage
0 0.5 · 1 - 1.5 · 2 - 2.5 · 3 - 4.5 ·		- 5 -	Remblai marno-calcaire	Tricône ø89 mm
5.5 •				
6 -				
6.5 •				
7 -				
7.5 -				
8 -				
8.5 •				
9 -				
9.5 •				
10 -				
10.5 •				
11 -				

P019.0043.5 Client

Ciments Calcia Chantier

GSM - Airvault

Forage S5

Type de forage Date de début

22/10/2019 10:11:13

Χ

Altitude (NGF)

Date de fin

Prof. (m)	Figuré	Prof. (m)	Description	Outils de forage
0 0.5 =	¥¥¥			
1 -			Remblai marno-calcaire	Tricône ø89 mm
1.5 =				Tricône
2 -		- 2 -		
2.5				
3 -				
3.5				
4 -				
4.5 -				
5.5				
6 -				
6.5				
7 -				
7.5				
8 -				
8.5 ·				
9.5				
10 -				
10.5				
11 -				

P019.0043.5

Client Ciments Calcia

Chantier GSM - Airvault S6

Forage

Type de forage Date de début

22/10/2019 10:11:13

Χ

Altitude (NGF)

Date de fin

Prof. (m)	Figuré	Prof. (m)	Description	Outils de forage
0	YYYY			
1 -				
1.5 •				шш
2 -			Remblai marno-calcaire	Tricône ø89 mm
2.5				Έ
3 -				
4 -		- 4 -		
4.5				
5 -				
5.5				
6.5				
7 -				
7.5				
8 -				
8.5				
9 -				
10 -				
10.5 •				
11 -				

P019.0043.5

Client Ciments Calcia

Chantier GSM - Airvault S7
Type de forage

Forage

Date de début

Χ

Altitude (NGF)

22/10/2019 10:11:13

Date de fin

Prof. (m)	Figuré	Prof. (m)	Description	Outils de forage
0				
1 -				
1.5 -				шш
2 -			Remblai marneux	Tricône ø89 mm
2.5 -				Ë
3.5 =				
4 -		- 4 -		
4.5 -				
5 -				
5.5 •				
6 -				
6.5 -				
7.5				
8 -				
8.5				
9 -				
9.5				
10 -				
10.5				
11 -				

Dossier P019.0043.5

Client Ciments Calcia

Chantier GSM - Airvault Forage S8

Type de forage Date de début

22/10/2019 10:11:13

Date de fin

22/10/2019 10:11:13

Χ

Altitude (NGF)

Prof. (m)	Figuré	Prof. (m)	Description	Outils de forage
0	¥ , ¥, ¥, ¥, \$			
0.5				Tricône ø89 mm
1 -			Remblai marneux	ricône 2
1.5		- 2 -		
2 -		- 2 -		
2.5				
3 -				
3.5				
4 -				
4.5				
5 -				
5.5				
6 -				
6.5				
7 -				
7.5				
8 -				
8.5				
9 -				
9.5				
10 -				
10.5 •				
11 -				

P019.0043.5 Client

Ciments Calcia Chantier

GSM - Airvault

Forage S9

Type de forage Date de début

22/10/2019 10:11:13

Date de fin

22/10/2019 10:11:13

Χ

Altitude (NGF)

Prof. Prof. Description Outils Figuré (m) de (m) forage 0 0.5 Tricône ø89 mm Remblai marneux Refus sur calcaire à 3,0 m de profondeur 2 2.5 3 3.5 4 4.5 5 5.5 6 7 7.5 8 8.5 9 9.5 10 -10.5 11 -

AL-West B.V.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

ESIRIS IDF INFRA 8-10 rue des Chênes Rouges 91580 ETRECHY FRANCE

 Date
 13.11.2019

 N° Client
 35008966

 N° commande
 896648

RAPPORT D'ANALYSES

n° Cde 896648 Solide / Eluat

Client 35008966 ESIRIS IDF INFRA

Référence PA19 3587 AIRVAULT

Date de validation 05.11.19 Prélèvement par: Client

Madame, Monsieur

non accrédités sont signalés par le symbole

les paramètres/résultats

Nous avons le plaisir de vous adresser ci-joint le rapport définitif des analyses chimiques provenant du laboratoire pour votre dossier en référence.

Sauf avis contraire, les analyses accréditées selon la norme EN ISO CEI 17025 ont été effectuées conformément aux méthodes de recherche citées dans les versions les plus actuelles de nos listes de prestations des Comités d'Accréditation Néerlandais (RVA), reconnus Cofrac, sous les numéro L005.

Si vous désirez recevoir de plus amples informations concernant le degré d'incertitudes d'une méthode de mesure déterminée, nous pouvons vous les fournir sur demande.

Nous signalons que le certificat d'analyses ne pourra être reproduit que dans sa totalité.

Nous vous informons que seules les conditions générales de AL-West, déposées à la Chambre du Commerce et de l'Industrie de Deventer, sont en vigueur.

Au cas où vous souhaiteriez recevoir des renseignements complémentaires, nous vous prions de prendre contact avec le service après-vente.

En vous remerciant pour la confiance que vous nous témoignez, nous vous prions d'agréer, Madame, Monsieur l'expression de nos sincères salutations.

Respectueusement,

AL-West B.V. M. Claude Gautheron, Tel. 33/380680143 Chargé relation clientèle

page 1 de 24

TESTING
RVA L 005

C-13-13510259-FR-P1

-es paramètres indiqués dans ce document sont accrédités selon

Your labs. Your service.

n° Cde 896648 Solide / Eluat

	N° échant.	Prélèvement	Nom d'échantillon
	476208	01.11.2019	S1 0-1
	476209	01.11.2019	S1 1-2
	476210	01.11.2019	S2 0-1
ֻ ב	476211	01.11.2019	S2 1-2
	476212	01.11.2019	S3 0-1
>			

476209 01.11	1.2019	S1 1-2					
476210 01.11	1.2019	S2 0-1					
476211 01.11	1.2019	S2 1-2					
476212 01.11	1.2019	S3 0-1					
		Unité	476208 \$1 0-1	476209 \$1 1-2	476210 \$2 0-1	476211 \$2 1-2	47621: 83 0-
			0.01	02	0201	32.1.2	55.5
Lixiviation	4F7 0\						
Lixiviation (EN 12	·		++	++	++	++	+
Prétraitement de			0.52	1 20	1 21	1 20	1 2
Masse échantillon to		ку ку	0,53	1,29	1,31	1,20	1,3
Prétraitement de l'éc		. (0	++	++	++	++	+
Préparation d'échan éch.)	itilions composes	5 (2	++	++	++	++	+
Broyeur à mâchoi	res		++	++	++	++	
Matière sèche		%	93,2	93,0	89,3	81,8	92,
Calcul des Fract	ions solubles						
Antimoine cumulé	(var. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05
Arsenic cumulé (v	ar. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05
Baryum cumulé (\	/ar. L/S)	mg/kg Ms	0 - 0,1 *	0 - 0,1 *	0,17 *	0,16 *	0 - 0,1
Cadmium cumulé	(var. L/S)	mg/kg Ms	0 - 0,001 *	0 - 0,001 *	0 - 0,001 *	0 - 0,001 *	0 - 0,001
Chlorures cumulé (var. L/S)	mg/kg Ms	18 *	19 *	17 *	17 *	13
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02 *	0 - 0,02 *	0,03 *	0,16 *	0 - 0,02
COT cumulé (var.	L/S)	mg/kg Ms	10 *	0 - 10 *	0 - 10 *	0 - 10 *	0 - 10
Cuivre cumulé (va	ar. L/S)	mg/kg Ms	0 - 0,02 *	0 - 0,02 *	0,02 *	0,02 *	0 - 0,02
Cyanures totaux cui	mulé (var. L/S)	mg/kg Ms	0 - 0,01 *	0 - 0,01 *	0 - 0,01 *	0 - 0,01 *	0 - 0,01
Fluorures cumulé	(var. L/S)	mg/kg Ms	8,0 *	6,0 *	6,0 *	6,0 *	3,0
Fraction soluble cun	nulé (var. L/S)	mg/kg Ms	0 - 1000 *	0 - 1000 *	0 - 1000 *	3400 *	0 - 1000
Indice phénol cumu	ılé (var. L/S)	mg/kg Ms	0 - 0,1 *	0 - 0,1 *	0 - 0,1 *	0 - 0,1 *	0 - 0,1
Mercure cumulé	(var. L/S)	mg/kg Ms	0 - 0,0003 *	0 - 0,0003 *	0 - 0,0003 *	0 - 0,0003 *	0 - 0,0003
Molybdène cumul	é (var. L/S)	mg/kg Ms	0,06 *	0,06 *	0,10 *	0 - 0,05 *	0 - 0,05
Nickel cumulé (va	ır. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05
Plomb cumulé (va	ar. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05
Sélénium cumulé	(var. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05
Sulfates cumulé (mg/kg Ms	190 *	380 *	190 *	1100 *	0 - 50
Zinc cumulé (var.	L/S)	mg/kg Ms	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *	0 - 0,02
Analyses Physic	o-chimiques						
pH-H2O			8,8	8,7	8,9	10,6	8,
COT Carbone Org	ganique Total	mg/kg Ms	34000	1200	12000	12000	380
Prétraitement pour	r analyses des r	nétaux					
Minéralisation à l'ea	u régale		++	++	++	++	+

Your labs. Your service.

n° Cde 896648 Solide / Eluat

	N° échant.	Prélèvement	Nom d'échantillon
	476213	01.11.2019	S3 1-2
	476214	01.11.2019	S3 2-3
	476215	01.11.2019	S3 3-4
ֻ ב	476216	01.11.2019	S3 4-5
2	476217	01.11.2019	S4 0-1
>			

476214 01.1 ⁴	1.2019	S3 2-3					
476215 01.1 ²	1.2019	S3 3-4					
476216 01.1 ²	1.2019	S3 4-5					
476217 01.1 ²	1.2019	S4 0-1					
		Unité	476213	476214	476215	476216	47621
			S3 1-2	S3 2-3	S3 3-4	S3 4-5	S4 0-
Lixiviation							
Lixiviation (EN 12	457-2)		++	++	++	++	+
Prétraitement de	s échantillons						
Masse échantillon t	otal inférieure à 2	kg kg	1,27	1,33	1,26	1,21	1,2
Prétraitement de l'é	chantillon		++	++	++	++	+
Préparation d'échar éch.)	tillons composés	(2	++	++	++	++	+
Broyeur à mâcho	res						
Matière sèche		%	90,4	90,3	89,5	89,5	92,
Calcul des Fract	ions solubles						
Antimoine cumulé	(var. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05
Arsenic cumulé (\	ar. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05
Baryum cumulé (/ar. L/S)	mg/kg Ms	0 - 0,1 *	0 - 0,1 *	0 - 0,1 *	0 - 0,1 *	0 - 0,1
Cadmium cumulé	(var. L/S)	mg/kg Ms	0 - 0,001 *	0 - 0,001 *	0 - 0,001 *	0 - 0,001 *	0 - 0,001
Chlorures cumulé (var. L/S)	mg/kg Ms	13 *	11 *	19 *	15 *	18
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *	0,03 *	0 - 0,02
COT cumulé (var	L/S)	mg/kg Ms	0 - 10 *	0 - 10 *	0 - 10 *	16 *	0 - 10
Cuivre cumulé (va	ar. L/S)	mg/kg Ms	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *	0 - 0,02
Cyanures totaux cu	mulé (var. L/S)	mg/kg Ms	0 - 0,01 *	0 - 0,01 *	0 - 0,01 *	0 - 0,01 *	0 - 0,01
Fluorures cumulé	(var. L/S)	mg/kg Ms	2,0 *	3,0 *	2,0 *	2,0 *	3,0
Fraction soluble cur	nulé (var. L/S)	mg/kg Ms	1000 *	0 - 1000 *	0 - 1000 *	0 - 1000 *	1000
Indice phénol cum	ılé (var. L/S)	mg/kg Ms	0 - 0,1 *	0 - 0,1 *	0 - 0,1 *	0 - 0,1 *	0 - 0,1
Mercure cumulé	(var. L/S)	mg/kg Ms	0 - 0,0003 *	0 - 0,0003 *	0 - 0,0003 *	0 - 0,0003 *	0 - 0,0003
Molybdène cumu	é (var. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0,07
Nickel cumulé (va	r. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05
Plomb cumulé (va	ar. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05
Sélénium cumulé	(var. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05
Sulfates cumulé (var. L/S)	mg/kg Ms	0 - 50 *	0 - 50 *	0 - 50 *	0 - 50 *	570
Zinc cumulé (var.	L/S)	mg/kg Ms	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *	0 - 0,02
Analyses Physic	o-chimiques						
pH-H2O			8,9	8,9	8,9	9,0	8,
COT Carbone Or	ganique Total	mg/kg Ms	<1000	2800	20000	<1000	2500
Prétraitement pou	r analyses des m	nétaux					
Minéralisation à l'ea	u régale		++	++	++	++	+

Your labs. Your service.

n° Cde 896648 Solide / Eluat

476218	01.11.2019	S4 1-2					
476219	01.11.2019	S4 4-5					
476220	01.11.2019	S5 0-1					
476221	01.11.2019	S5 1-2					
476222	01.11.2019	S6 0-1					
		Unité	476218	476219	476220 85 0-1	476221 S5 1-2	47622 S6 0
Lixiviation			\$4 1-2	S4 4-5	33 0-1	33 1-2	30
	EN 12457-2)		++	++	++	++	
Prétraiteme	ent des échantillor	ıs					
Masse échan	tillon total inférieure à	2 kg kg	1,29	1,16	1,21	1,20	1,
Prétraitement	de l'échantillon		++	++	++	++	
Préparation d éch.)	l'échantillons composé	es (2	++	++	++	++	
Broyeur à m	nâchoires		++				
Matière sèc	he	%	94,1	93,5	90,3	94,1	92
Calcul des	Fractions solubles	3					
Antimoine c	umulé (var. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,0
Arsenic cum	nulé (var. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0,06 *	0 - 0,0
Baryum cun	nulé (var. L/S)	mg/kg Ms	0 - 0,1 *	0 - 0,1 *	0 - 0,1 *	0 - 0,1 *	0 - 0,
Cadmium cı	umulé (var. L/S)	mg/kg Ms	0 - 0,001 *	0 - 0,001 *	0 - 0,001 *	0 - 0,001 *	0 - 0,00
Chlorures cur	mulé (var. L/S)	mg/kg Ms	19 *	17 *	23 *	19 *	1
Chrome cur	nulé (var. L/S)	mg/kg Ms	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *	0 - 0,0
COT cumule	é (var. L/S)	mg/kg Ms	0 - 10 *	0 - 10 *	0 - 10 *	11 *	0 - 1
Cuivre cum	ulé (var. L/S)	mg/kg Ms	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *	0 - 0,0
Cyanures tota	aux cumulé (var. L/S)	mg/kg Ms	0 - 0,01 *	0 - 0,01 *	0 - 0,01 *	0 - 0,01 *	0 - 0,0
	umulé (var. L/S)	mg/kg Ms	2,0 *	2,0 *	3,0 *	3,0 *	4,
Fraction solul	ole cumulé (var. L/S)	mg/kg Ms	1000 *	0 - 1000 *	0 - 1000 *	0 - 1000 *	0 - 100
Indice phéno	ol cumulé (var. L/S)	mg/kg Ms	0 - 0,1 *	0 - 0,1 *	0 - 0,1 *	0 - 0,1 *	0 - 0,
Mercure cur	mulé (var. L/S)	mg/kg Ms	0 - 0,0003 *	0 - 0,0003 *	0 - 0,0003 *	0 - 0,0003 *	0 - 0,000
Molybdène	cumulé (var. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,0
Nickel cumu	ılé (var. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,0
Plomb cumu	ulé (var. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,0
Sélénium cu	ımulé (var. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,0
Sulfates cur	nulé (var. L/S)	mg/kg Ms	350 *	420 *	0 - 50 *	0 - 50 *	0 - 5
Zinc cumulé		mg/kg Ms	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *	0 - 0,0
	hysico-chimiques						
pH-H2O			8,5	8,6	8,9	8,8	8
	ne Organique Total	mg/kg Ms	1500	<1000	<1000	1700	450
	nt pour analyses des	métaux					
Minéralisatior	n à l'eau régale		++	++	++	++	

	Unité	476218 S4 1-2	476219 84 4-5	476220 \$5 0-1	476221 S5 1-2	476222 \$6 0-1
Lixiviation						
Lixiviation (EN 12457-2)		++	++	++	++	++
Prétraitement des échantillons	i					
Masse échantillon total inférieure à 2	kg kg	1,29	1,16	1,21	1,20	1,16
Prétraitement de l'échantillon		++	++	++	++	++
Préparation d'échantillons composés éch.)	(2	++	++	++	++	++
Broyeur à mâchoires		++				
Matière sèche	%	94,1	93,5	90,3	94,1	92,0
Calcul des Fractions solubles						
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *
Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0,06 *	0 - 0,05 *
Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1 *	0 - 0,1 *	0 - 0,1 *	0 - 0,1 *	0 - 0,1 *
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001 *	0 - 0,001 *	0 - 0,001 *	0 - 0,001 *	0 - 0,001 *
Chlorures cumulé (var. L/S)	mg/kg Ms	19 *	17 *	23 *	19 *	17 *
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *
COT cumulé (var. L/S)	mg/kg Ms	0 - 10 *	0 - 10 *	0 - 10 *	11 *	0 - 10 *
Cuivre cumulé (var. L/S)	mg/kg Ms	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *
Cyanures totaux cumulé (var. L/S)	mg/kg Ms	0 - 0,01 *	0 - 0,01 *	0 - 0,01 *	0 - 0,01 *	0 - 0,01 *
Fluorures cumulé (var. L/S)	mg/kg Ms	2,0 *	2,0 *	3,0 *	3,0 *	4,0 *
Fraction soluble cumulé (var. L/S)	mg/kg Ms	1000 *	0 - 1000 *	0 - 1000 *	0 - 1000 *	0 - 1000 *
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,1 *	0 - 0,1 *	0 - 0,1 *	0 - 0,1 *	0 - 0,1 *
Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003 *	0 - 0,0003 *	0 - 0,0003 *	0 - 0,0003 *	0 - 0,0003 *
Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *
Sulfates cumulé (var. L/S)	mg/kg Ms	350 *	420 *	0 - 50 *	0 - 50 *	0 - 50 *
Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *
Analyses Physico-chimiques						
pH-H2O		8,5	8,6	8,9	8,8	8,9
COT Carbone Organique Total	mg/kg Ms	1500	<1000	<1000	1700	45000
Prétraitement pour analyses des n	nétaux					
Minéralisation à l'eau régale		++	++	++	++	++

RvA L 005

page 4 de 24

Your labs. Your service.

n° Cde 896648 Solide / Eluat

N° échant.	Prélèvement	Nom d'échantillon
476223	01.11.2019	S6 1-2
476224	01.11.2019	S6 3-4
476225	01.11.2019	S7 0-1
์ 476226	01.11.2019	S7 1-2
476227	01.11.2019	S7 2-3

476224	01.11.2019	S6 3-4					
476225	01.11.2019	S7 0-1					
476226	01.11.2019	S7 1-2					
476227	01.11.2019	S7 2-3					
		Unité	476223	476224	476225	476226	47622
			S6 1-2	S6 3-4	S7 0-1	S7 1-2	S7 2-
Lixiviation							
Lixiviation (E	EN 12457-2)		++	++	++	++	+
Prétraiteme	ent des échantillons	i					
Masse échant	tillon total inférieure à 2	kg kg	1,29	1,21	0,99	0,94	1,18
Prétraitement	de l'échantillon		++	++	++	++	+-
Préparation d' éch.)	'échantillons composés	(2	++	++	++	++	+-
Broyeur à m	âchoires		++				+-
Matière sèch	ne	%	92,3	89,9	92,2	91,8	89,0
Calcul des	Fractions solubles						
Antimoine cu	umulé (var. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05
Arsenic cum	ulé (var. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05
Baryum cum	nulé (var. L/S)	mg/kg Ms	0 - 0,1 *	0 - 0,1 *	0 - 0,1 *	0 - 0,1 *	0 - 0,1
Cadmium cı	ımulé (var. L/S)	mg/kg Ms	0 - 0,001 *	0 - 0,001 *	0 - 0,001 *	0 - 0,001 *	0 - 0,001
Chlorures cun	nulé (var. L/S)	mg/kg Ms	14 *	16 *	11 *	16 *	23
Chrome cum	nulé (var. L/S)	mg/kg Ms	0 - 0,02 *	0,02 *	0 - 0,02 *	0 - 0,02 *	0 - 0,02
COT cumulé	é (var. L/S)	mg/kg Ms	0 - 10 *	13 *	0 - 10 *	0 - 10 *	0 - 10
Cuivre cumu	ılé (var. L/S)	mg/kg Ms	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *	0 - 0,02
Cyanures tota	aux cumulé (var. L/S)	mg/kg Ms	0 - 0,01 *	0 - 0,01 *	0 - 0,01 *	0 - 0,01 *	0 - 0,01
Fluorures cu	ımulé (var. L/S)	mg/kg Ms	4,0 *	2,0 *	3,0 *	2,0 *	3,0
Fraction solub	ole cumulé (var. L/S)	mg/kg Ms	0 - 1000 *	0 - 1000 *	0 - 1000 *	0 - 1000 *	0 - 1000
Indice phéno	l cumulé (var. L/S)	mg/kg Ms	0 - 0,1 *	0 - 0,1 *	0 - 0,1 *	0 - 0,1 *	0 - 0,1
Mercure cun	nulé (var. L/S)	mg/kg Ms	0 - 0,0003 *	0 - 0,0003 *	0 - 0,0003 *	0 - 0,0003 *	0 - 0,0003
Molybdène ເ	cumulé (var. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05
Nickel cumu	lé (var. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05
Plomb cumu	ılé (var. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05
Sélénium cu	ımulé (var. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05
	nulé (var. L/S)	mg/kg Ms	0 - 50 *	0 - 50 *	0 - 50 *	0 - 50 *	59
Zinc cumulé	(var. L/S)	mg/kg Ms	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *	0 - 0,02
Analyses P	hysico-chimiques						
pH-H2O			8,8	8,9	8,9	9,0	9,0
COT Carbor	ne Organique Total	mg/kg Ms	44000	<1000	<1000	1000	<1000
Prétraitemen	t pour analyses des n	nétaux					
Minéralisation	à l'eau régale		++	++	++	++	+-

page 5 de 24

Your labs. Your service.

n° Cde 896648 Solide / Eluat

	N° échant.	Prélèvement	Nom d'échantillon
	476228	01.11.2019	S8 0-1
	476229	01.11.2019	S8 1-2
•	476230	01.11.2019	S9 0-1
֝֝֝֟ טַ	476231	01.11.2019	S9 1-2
3	476232	01.11.2019	S9 2-3
اح			

476229	01.11.2019	S8 1-2					
476230	01.11.2019	S9 0-1					
476231	01.11.2019	S9 1-2					
476232	01.11.2019	S9 2-3					
		Unité	476228 \$8 0-1	476229 \$8 1-2	476230 \$9 0-1	476231 S9 1-2	47623 s9 2
Liviviation				22.2			
Lixiviation			++	++	++	++	
Lixiviation (EN 12457-2) Prétraitement des échantillons							-
Masse échantillon total inférieure à 2 kg kg			1,15	1,25	1,19	1,26	1,2
Prétraitement de l'échantillon		ng ng	++	++	++	++	- 1,2
	l'échantillons composés	(2	++	++	++	++	
éch.)	Todrianimente dempedee	(2					
Broyeur à m	nâchoires		++	++	++		-
Matière sèc		%	89,2	90,3	93,7	90,4	90
	Fractions solubles						
	umulé (var. L/S)	mg/kg Ms	0,07 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05
	nulé (var. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05
	nulé (var. L/S)	mg/kg Ms	0 - 0,1 *	0 - 0,1 *	0 - 0,1 *	0 - 0,1 *	0 - 0,1
	umulé (var. L/S)	mg/kg Ms	0 - 0,001 *	0 - 0,001 *	0 - 0,001 *	0 - 0,001 *	0 - 0,001
Chlorures cur	mulé (var. L/S)	mg/kg Ms	19 *	13 *	21 *	21 *	15
	nulé (var. L/S)	mg/kg Ms	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *	0 - 0,02
COT cumule	é (var. L/S)	mg/kg Ms	30 *	0 - 10 *	12 *	0 - 10 *	14
Cuivre cum	ulé (var. L/S)	mg/kg Ms	0,08 *	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *	0 - 0,02
Cyanures tota	aux cumulé (var. L/S)	mg/kg Ms	0 - 0,01 *	0 - 0,01 *	0 - 0,01 *	0 - 0,01 *	0 - 0,01
Fluorures cu	umulé (var. L/S)	mg/kg Ms	5,0 *	1,0 *	5,0 *	3,0 *	7,0
Fraction solul	ole cumulé (var. L/S)	mg/kg Ms	1100 *	0 - 1000 *	0 - 1000 *	0 - 1000 *	0 - 1000
Indice phéno	ol cumulé (var. L/S)	mg/kg Ms	0 - 0,1 *	0 - 0,1 *	0 - 0,1 *	0 - 0,1 *	0 - 0,1
Mercure cur	mulé (var. L/S)	mg/kg Ms	0 - 0,0003 *	0 - 0,0003 *	0 - 0,0003 *	0 - 0,0003 *	0 - 0,0003
Molybdène	cumulé (var. L/S)	mg/kg Ms	0,06 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05
Nickel cumu	ılé (var. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05
	ulé (var. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05
Sélénium cu	umulé (var. L/S)	mg/kg Ms	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05 *	0 - 0,05
Sulfates cur	mulé (var. L/S)	mg/kg Ms	260 *	0 - 50 *	0 - 50 *	0 - 50 *	0 - 50
Zinc cumulé	<u> </u>	mg/kg Ms	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *	0 - 0,02 *	0 - 0,02
Analyses P	hysico-chimiques						
pH-H2O			8,5	9,1	8,8	8,9	8
	ne Organique Total	mg/kg Ms	25000	56000	64000	1300	150
	rétraitement pour analyses des métaux						
Minéralisation	n à l'eau régale		++	++	++	++	- 1

Your labs. Your service.

n° Cde 896648 Solide / Eluat

Metaux	٠.		Unité	476208 \$1 0-1	476209 \$1 1-2	476210 S2 0-1	476211 S2 1-2	476212 \$3 0-1
Chrome (Cr) mg/kg Ms 6,0 2,8 22 8,5 2,9	* *	Métaux						
Chrome (Cr) mg/kg Ms 6,0 2,8 22 8,5 2,9	oole	Arsenic (As)	mg/kg Ms	7,5	14	6,8	12	17
Chrome (Cr) mg/kg Ms 6,0 2,8 22 8,5 2,9	symk	Cadmium (Cd)	mg/kg Ms	0,5	0,2	0,4	0,9	0,2
Zinc (Zn) mg/kg Ms 46 14 41 47 17 17 17 17 17	r e	Chrome (Cr)	mg/kg Ms	28	25	27	29	21
Zinc (Zn) mg/kg Ms 46 14 41 47 17 17 17 17 17	s pa	Cuivre (Cu)	mg/kg Ms	6,0	2,8	22	8,5	2,9
Zinc (Zn) mg/kg Ms 46 14 41 47 17 17 17 17 17	nalés	Mercure (Hg)	mg/kg Ms	<0,05	<0,05	<0,05	0,07	<0,05
Zinc (Zn) mg/kg Ms 46 14 41 47 17 17 17 17 17	sign	Nickel (Ni)	mg/kg Ms	12	6,8	12	13	9,1
Zinc (Zn) mg/kg Ms 46 14 41 47 17 17 17 17 17	sont	Plomb (Pb)	mg/kg Ms	8,8	7,2	7,6	26	7,4
Acénaphtylène mg/kg Ms <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <	tés :	Zinc (Zn)	mg/kg Ms	46	14	41	47	17
Acénaphtylène mg/kg Ms <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <	rédi	Hydrocarbures Aromatiques Polycycliques (ISO)						
Benzo(b)fluoranthène mg/kg Ms <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 Benzo(k)fluoranthène mg/kg Ms <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,	acc	Naphtalène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Benzo(b)fluoranthène mg/kg Ms <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 Benzo(k)fluoranthène mg/kg Ms <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,	nou	Acénaphtylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Benzo(b)fluoranthène mg/kg Ms <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 Benzo(k)fluoranthène mg/kg Ms <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,	tats	Acénaphtène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Benzo(b)fluoranthène mg/kg Ms <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 Benzo(k)fluoranthène mg/kg Ms <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,	ésul	Fluorène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Benzo(b)fluoranthène mg/kg Ms <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 Benzo(k)fluoranthène mg/kg Ms <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,	es/r	Phénanthrène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Benzo(b)fluoranthène mg/kg Ms <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 Benzo(k)fluoranthène mg/kg Ms <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,	nètr	Anthracène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Benzo(b)fluoranthène mg/kg Ms <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 Benzo(k)fluoranthène mg/kg Ms <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,	arar	Fluoranthène	mg/kg Ms	<0,050	<0,050	0,062	0,068	<0,050
Benzo(b)fluoranthène mg/kg Ms <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 Benzo(k)fluoranthène mg/kg Ms <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,	es b	Pyrène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Benzo(b)fluoranthène mg/kg Ms <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 Benzo(k)fluoranthène mg/kg Ms <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,	uls i	Benzo(a)anthracène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Benzo(a)pyrène mg/kg Ms <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050		Chrysène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Benzo(a)pyrène mg/kg Ms <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050	305.	Benzo(b)fluoranthène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
	5	Benzo(k)fluoranthène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
	702	Benzo(a)pyrène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
	C ₁	Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
	O/E	Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
	n <u>S</u>	Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
	selo	HAP (6 Borneff) - somme	mg/kg Ms	n.d.	n.d.	·		n.d.
	tés	Somme HAP (VROM)	mg/kg Ms	n.d.	n.d.	0,0620 ^{x)}	0,0680 ^{x)}	n.d.
	rédi	HAP (EPA) - somme	mg/kg Ms	n.d.	n.d.	0,0620 ^{x)}	0,0680 x)	n.d.
Benzène mg/kg Ms <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050	w	Composés aromatiques						
Toluène mg/kg Ms <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050	soni	Benzène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Ethylbenzène mg/kg Ms <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,010 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,10 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,0	ent	Toluène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
### ### ##############################	cnm	Ethylbenzène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Somme Xylène mg/kg Ms <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <th< td=""><td>φ</td><td>m,p-Xylène</td><td>mg/kg Ms</td><td><0,10</td><td><0,10</td><td><0,10</td><td><0,10</td><td><0,10</td></th<>	φ	m,p-Xylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
Somme Xylènes mg/kg Ms n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	S	o-Xylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
BTEX total mg/kg Ms n.d. * n.d. * n.d. * n.d. * n.d. * n.d. * n.d. * n.d. *	dar	Somme Xylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
COHV Chlorure de Vinyle mg/kg Ms <0,02 <0,02 <0,02 <0,02 <0,02 <0,02	lués	BTEX total	mg/kg Ms	n.d. *	n.d. *	n.d. *	n.d. *	n.d. *
Chlorure de Vinyle mg/kg Ms <0,02 <0,02 <0,02 <0,02 <0,02 <0,02 Dichlorométhane mg/kg Ms <0,05 <0,05 <0,05 <0,05 <0,05 Trichlorométhane mg/kg Ms <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	ndig	COHV						
Dichlorométhane mg/kg Ms <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 Trichlorométhane mg/kg Ms <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	res i	Chlorure de Vinyle	mg/kg Ms	<0,02	<0,02	<0,02	<0,02	<0,02
Trichlorométhane mg/kg Ms <0,05 <0,05 <0,05 <0,05 <0,05	mèti	Dichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
	oara	Trichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05

page 7 de 24

Your labs. Your service.

n° Cde 896648 Solide / Eluat

•	Unité	476213 \$3 1-2	476214 \$3 2-3	476215 \$3 3-4	476216 \$3 4-5	476217 \$4 0-1
Métaux						
	mg/kg Ms	19	18	17	19	18
Arsenic (As) Cadmium (Cd)	mg/kg Ms	<0,2 ^{pe)}	0,1	0,1	0,1	<0,1
Chrome (Cr)	mg/kg Ms	25	23	20	20	20
Cuivre (Cu)	mg/kg Ms	3,2	2,5	2,3	2,5	2,2
Mercure (Hg) Nickel (Ni)	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Nickel (Ni)	mg/kg Ms	7,2	6,9	6,6	6,8	6,6
Plomb (Pb)	mg/kg Ms	7,8	6,4	6,3	6,9	7,6
Plomb (Pb) Zinc (Zn) Hydrocarbures Aromatiques Polycyc Naphtalène Acénaphtylène Acénaphtène Fluorène Phénanthrène Anthracène Fluoranthène Pyrène Benzo(a)anthracène Chrysène	mg/kg Ms	13	13	14	14	14
Hydrocarbures Aromatiques Polycyc	liques (ISO)					
Naphtalène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Acénaphtylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Acénaphtène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Fluorène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Phénanthrène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Anthracène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Fluoranthène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Pyrène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Benzo(a)anthracène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Chrysène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Benzo(b)fluoranthène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Benzo(k)fluoranthène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Benzo(a)pyrène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Benzo(a)pyrène Dibenzo(a,h)anthracène Benzo(g,h,i)pérylène Indéno(1,2,3-cd)pyrène HAP (6 Borneff) - somme	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d
Somme HAP (VROM)	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d
Somme HAP (VROM) HAP (EPA) - somme Composés aromatiques	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d
• •						
Benzène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Benzène Toluène Ethylbenzène m,p-Xylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Ethylbenzène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
m,p-Xylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
o-Xylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Somme Xylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d
o-Xylène Somme Xylènes BTEX total COHV Chlorure de Vinyle Dichlorométhane Trichlorométhane	mg/kg Ms	n.d. *	n.d. *	n.d. *	n.d. *	n.d. ¹
COHV						
Chlorure de Vinyle	mg/kg Ms	<0,02	<0,02	<0,02	<0,02	<0,02
Dichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Trichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05

TESTING RVA L 005

page 8 de 24

Your labs. Your service.

n° Cde 896648 Solide / Eluat

		Unité	476218 \$4 1-2	476219 S4 4-5	476220 S5 0-1	476221 S5 1-2	476222 S6 0-1	
* *	Métaux							
	Arsenic (As)	mg/kg Ms	11	12	16	19	13	
symbole	Cadmium (Cd)	mg/kg Ms	<0,1	<0,1	<0,1	0,1	0,1	
<u>е</u> s	Chrome (Cr)	mg/kg Ms	11	13	19	24	19	
par	Cuivre (Cu)	mg/kg Ms	0,7	1,2	2,5	3,0	2,1	
alés	Mercure (Hg)	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05	
sign	Nickel (Ni)	mg/kg Ms	3,6	4,0	7,1	7,6	9,5	
sont	Plomb (Pb)	mg/kg Ms	6,2	6,1	6,4	11	7,3	
tés s	Zinc (Zn)	mg/kg Ms	4,6	6,3	15	15	22	
Seuls les paramètres/résultats non accrédités sont signalés par le	Hydrocarbures Aromatiques Polycycliques (ISO)							
acc	Naphtalène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050	
non	Acénaphtylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050	
tats	Acénaphtène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050	
ésul	Fluorène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050	
es/r	Phénanthrène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050	
nètr	Anthracène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050	
araı	Fluoranthène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050	
es p	Pyrène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050	
uls	Benzo(a)anthracène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050	
	Chrysène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050	
:2005.	Benzo(b)fluoranthène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050	
5 :2	Benzo(k)fluoranthène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050	
702	Benzo(a)pyrène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050	
accrédités selon ISO/IEC 17025	Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050	
, ()	Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050	
<u>8</u>	Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050	
selc	HAP (6 Borneff) - somme	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.	
lités	Somme HAP (VROM)	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.	
créd	HAP (EPA) - somme	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.	
	Composés aromatiques							
son	Benzène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050	
nent	Toluène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050	
nno	Ethylbenzène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050	
é	m,p-Xylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10	
ns c	o-Xylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050	
s da	Somme Xylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.	
qué	BTEX total	mg/kg Ms	n.d. *	n.d. *	n.d. *	n.d. *	n.d. *	
indi	COHV							
tres	Chlorure de Vinyle	mg/kg Ms	<0,02	<0,02	<0,02	<0,02	<0,02	
paramètres indiqués dans ce document sont	Dichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05	
par	Trichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05	

RvA L 005

page 9 de 24

n° Cde 896648 Solide / Eluat

· *		Unité	476223 S6 1-2	476224 S6 3-4	476225 \$7 0-1	476226 \$7 1-2	476227 \$7 2-3
*	Métaux						
oole	Arsenic (As)	mg/kg Ms	13	11	9,3	8,3	12
sym	Cadmium (Cd)	mg/kg Ms	<0,1	<0,1	<0,1	0,1	0,1
Seuls les paramètres/résultats non accrédités sont signalés par le symbole	Chrome (Cr)	mg/kg Ms	17	12	19	20	16
s pa	Cuivre (Cu)	mg/kg Ms	2,4	1,2	0,4	0,6	1,4
ıalé	Mercure (Hg)	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
sigr	Nickel (Ni)	mg/kg Ms	8,7	5,6	5,9	6,1	6,5
sont	Plomb (Pb)	mg/kg Ms	6,7	5,5	4,5	4,0	7,3
tés s	Zinc (Zn)	mg/kg Ms	19	10	8,5	14	12
rédi	Hydrocarbures Aromatiques Polycyc	liques (ISO)					
acc	Naphtalène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
nou	Acénaphtylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
tats	Acénaphtène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
ésul	Fluorène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
es/r	Phénanthrène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
nètr	Anthracène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
arar	Fluoranthène	mg/kg Ms	0,082	<0,050	<0,050	<0,050	<0,050
es p	Pyrène	mg/kg Ms	0,066	<0,050	<0,050	<0,050	<0,050
nls l	Benzo(a)anthracène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
	Chrysène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
ccrédités selon ISO/IEC 17025 :2005.	Benzo(b)fluoranthène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
2	Benzo(k)fluoranthène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
702	Benzo(a)pyrène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
	Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
9	Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
<u> </u>	Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
selo	HAP (6 Borneff) - somme	mg/kg Ms	0,0820 ^{x)}	n.d.	n.d.	n.d.	n.d.
ités	Somme HAP (VROM)	mg/kg Ms	0,0820 ^{x)}	n.d.	n.d.	n.d.	n.d.
réd	HAP (EPA) - somme	mg/kg Ms	0,148 ^{x)}	n.d.	n.d.	n.d.	n.d.
w	Composés aromatiques						
son	Benzène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
ent	Toluène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
cnm	Ethylbenzène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
မှ ရ	m,p-Xylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
)S C	o-Xylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
dar	Somme Xylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
dnés	BTEX total	mg/kg Ms	n.d. *	n.d. *	n.d. *	n.d. *	n.d. *
indic	COHV						
res	Chlorure de Vinyle	mg/kg Ms	<0,02	<0,02	<0,02	<0,02	<0,02
paramètres indiqués dans ce document sont	Dichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
æ	Trichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05

page 10 de 24

Your labs. Your service.

n° Cde 896648 Solide / Eluat

·	Unité	476228 \$8 0-1	476229 \$8 1-2	476230 \$9 0-1	476231 \$9 1-2	476232 S9 2-3
∞ Métaux						
Arsenic (As) Cadmium (Cd)	mg/kg Ms	12	21	3,9	15	9,8
Cadmium (Cd)	mg/kg Ms	0,2	<0,1	0,5	<0,1	0,2
	mg/kg Ms	32	23	25	17	19
Cuivre (Cu)	mg/kg Ms	13	1,7	3,6	2,0	2,6
Chrome (Cr) Cuivre (Cu) Mercure (Hg) Nickel (Ni) Plomb (Pb)	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
সি Nickel (Ni)	mg/kg Ms	22	6,2	6,5	7,3	7,8
Plomb (Pb)	mg/kg Ms	71	8,2	4,7	7,1	8,8
Zinc (Zn)	mg/kg Ms	51	11	24	13	20
Zinc (Zn) Hydrocarbures Aromatiques Polycyc Naphtalène	liques (ISO)					
Naphtalène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Acénaphtylène Acénaphtène Fluorène Phénanthrène Anthracène Fluoranthène Pyrène Benzo(a)anthracène Chrysène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Acénaphtène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Fluorène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Phénanthrène	mg/kg Ms	0,37	<0,050	<0,050	<0,050	<0,050
Anthracène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Fluoranthène	mg/kg Ms	0,48	<0,050	<0,050	<0,050	<0,050
Pyrène	mg/kg Ms	0,37	<0,050	<0,050	<0,050	<0,050
Benzo(a)anthracène	mg/kg Ms	0,15	<0,050	<0,050	<0,050	<0,050
	mg/kg Ms	0,12	<0,050	<0,050	<0,050	<0,050
Benzo(b)fluoranthène	mg/kg Ms	0,16	<0,050	<0,050	<0,050	<0,050
Benzo(k)fluoranthène	mg/kg Ms	0,074	<0,050	<0,050	<0,050	<0,050
Benzo(b)fluoranthène Benzo(a)pyrène	mg/kg Ms	0,095	<0,050	<0,050	<0,050	<0,050
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Benzo(g,h,i)pérylène	mg/kg Ms	0,085	<0,050	<0,050	<0,050	<0,050
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,11	<0,050	<0,050	<0,050	<0,050
HAP (6 Borneff) - somme	mg/kg Ms	1,00	n.d.	n.d.	n.d.	n.d.
Somme HAP (VROM)	mg/kg Ms	1,48 ^{×)}	n.d.	n.d.	n.d.	n.d.
Dibenzo(a,h)anthracène Benzo(g,h,i)pérylène Indéno(1,2,3-cd)pyrène HAP (6 Borneff) - somme Somme HAP (VROM) HAP (EPA) - somme Composés aromatiques	mg/kg Ms	2,01 ^{x)}	n.d.	n.d.	n.d.	n.d.
Benzène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Toluène	mg/kg Ms	0,065	<0,050	<0,050	<0,050	<0,050
Ethylbenzène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
m,p-Xylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
o-Xylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Somme Xylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
BTEX total	mg/kg Ms	0,065 * ^{x)}	n.d. *	n.d. *	n.d. *	n.d. *
COHV						
Chlorure de Vinyle	mg/kg Ms	<0,02	<0,02	<0,02	<0,02	<0,02
Benzène Toluène Ethylbenzène m,p-Xylène o-Xylène Somme Xylènes BTEX total COHV Chlorure de Vinyle Dichlorométhane Trichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Trichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
-						

TESTING RVA L 005

page 11 de 24

Your labs. Your service.

	Unité	476208 \$1 0-1	476209 \$1 1-2	476210 \$2 0-1	476211 \$2 1-2	476212 S3 0-1
COHV						
	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Tétrachlorométhane Trichloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,0
	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,0
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,0
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,0
1,1-Dichloroéthane	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,1
Tétrachloroéthylène 1,1,1-Trichloroéthane 1,1,2-Trichloroéthane 1,1-Dichloroéthane 1,2-Dichloroéthane cis-1,2-Dichloroéthène 1,1-Dichloroéthylène Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,0
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,02
1,1-Dichloroéthylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,1
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,02
Somme cis/trans-1,2- Dichloroéthylènes Hydrocarbures totaux (ISO) Hydrocarbures totaux C10-C40 Fraction C10-C12 Fraction C12-C16 Fraction C16-C20 Fraction C20-C24 Fraction C24-C28	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.c
Hydrocarbures totaux (ISO)						
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	<20,0	<20,0	40,0	<20,
Fraction C10-C12	mg/kg Ms	<4,0 *	<4,0 *	<4,0 *	<4,0 *	<4,0
Fraction C12-C16	mg/kg Ms	<4,0 *	<4,0 *	<4,0 *	<4,0 *	<4,0
Fraction C16-C20	mg/kg Ms	<2,0 *	<2,0 *	<2,0 *	2,6 *	<2,0
Fraction C20-C24	mg/kg Ms	<2,0 *	2,6 *	<2,0 *	4,9 *	<2,0
Fraction C24-C28	mg/kg Ms	3,4 *	4,0 *	2,8 *	8,3 *	2,7
Fraction C28-C32	mg/kg Ms	4,0 *	4,2 *	3,4 *	12 *	3,0
Fraction C32-C36	mg/kg Ms	2,7 *	2,8 *	2,5 *	7,2 *	<2,0
Fraction C36-C40	mg/kg Ms	<2,0 *	<2,0 *	<2,0 *	3,7 *	<2,0
Polychlorobiphényles						
Somme 6 PCB	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.c
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.c
PCB (28)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,00
PCB (52)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,00
PCB (101)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,00
PCB (118)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,00
PCB (138)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,00
PCB (153)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,00
PCB (180)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,00
Analyses sur éluat après lixiviation						
L/S cumulé	ml/g	10,0	10,0	10,0	10,0	10,
Conductivité électrique	μS/cm	110	130	120	840	60,
рН		8,8	9,0	8,8	11,6	8,
PCB (138) PCB (153) PCB (180) Analyses sur éluat après lixiviation L/S cumulé Conductivité électrique pH Température Analyses Physico-chimiques sur é	°C	19,3	19,6	19,1	20,1	19,
Analyses Physico-chimiques sur é						
Résidu à sec Fluorures (F)	mg/l	<100	<100	<100	340	<10
Fluorures (F)	mg/l	0,8	0,6	0,6	0,6	0,3

Your labs. Your service.

	Unité	476213 S3 1-2	476214 \$3 2-3	476215 \$3 3-4	476216 \$3 4-5	47621 s4 0-
COHV						
Tétrachlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,0
Trichloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,0
Tétrachloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,0
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,0
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,0
1,1-Dichloroéthane	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,
1,2-Dichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,0
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,02
1,1-Dichloroéthylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,02
Somme cis/trans-1,2- Dichloroéthylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.
Hydrocarbures totaux (ISO)						
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	<20,0	<20,0	<20,0	<20
Fraction C10-C12	mg/kg Ms	<4,0 *	<4,0 *	<4,0 *	<4,0 *	<4,0
Fraction C12-C16	mg/kg Ms	<4,0 *	<4,0 *	<4,0 *	<4,0 *	<4,
Fraction C16-C20	mg/kg Ms	<2,0 *	<2,0 *	<2,0 *	<2,0 *	<2,
Fraction C20-C24	mg/kg Ms	<2,0 *	<2,0 *	<2,0 *	2,5 *	<2,0
Fraction C24-C28	mg/kg Ms	2,3 *	2,5 *	3,1 *	5,1 *	3,0
Fraction C28-C32	mg/kg Ms	2,5 *	2,7 *	3,2 *	5,1 *	3,3
Fraction C32-C36	mg/kg Ms	<2,0 *	2,4 *	2,2 *	3,2 *	2,3
Fraction C36-C40	mg/kg Ms	<2,0 *	<2,0 *	<2,0 *	<2,0 *	<2,0
Polychlorobiphényles						
Somme 6 PCB	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.
PCB (28)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,0
PCB (52)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,0
PCB (101)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,0
PCB (118)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,0
PCB (138)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,0
PCB (153)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,0
PCB (180)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,0
Analyses sur éluat après lixiviation	l					
L/S cumulé	ml/g	10,0	10,0	10,0	10,0	10
Conductivité électrique	μS/cm	57,3	57,4	55,9	57,5	1
рН		9,0	9,1	9,0	9,2	8
Température	°C	19,7	18,8	18,8	19,2	18
Analyses Physico-chimiques sur él	luat					
Résidu à sec	mg/l	100	<100	<100	<100	10
Fluorures (F)	mg/l	0,2	0,3	0,2	0,2	0

Your labs. Your service.

	Unité	476218 \$4 1-2	476219 \$4 4-5	476220 \$5 0-1	476221 \$5 1-2	476222 S6 0-1
COHV						
Tétrachlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,0
Tétrachlorométhane Trichloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,0
Tétrachloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,0
1 1 1-Trichloroáthana	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,0
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,0
1,1,2-Trichloroéthane 1,1-Dichloroéthane 1,2-Dichloroéthane	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,1
1,2-Dichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,0
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,02
1,1-Dichloroéthylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,1
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,02
Somme cis/trans-1,2-Dichloroéthylènes Hydrocarbures totaux (ISO) Hydrocarbures totaux C10-C40 Fraction C10-C12 Fraction C12-C16 Fraction C16-C20 Fraction C20-C24 Fraction C24-C28	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.c
Hydrocarbures totaux (ISO)						
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	25,3	<20,0	58,2	<20,
Fraction C10-C12	mg/kg Ms	<4,0 *	<4,0 *	<4,0 *	<4,0 *	<4,0
Fraction C12-C16	mg/kg Ms	<4,0 *	<4,0 *	<4,0 *	<4,0 *	<4,0
Fraction C16-C20	mg/kg Ms	<2,0 *	<2,0 *	<2,0 *	4,9 *	<2,0
Fraction C20-C24	mg/kg Ms	<2,0 *	3,6 *	<2,0 *	9,2 *	<2,0
Fraction C24-C28	mg/kg Ms	3,5 *	6,3 *	<2,0 *	13,4 *	<2,0
Fraction C28-C32	mg/kg Ms	3,7 *	6,6 *	<2,0 *	16 *	<2,0
Fraction C32-C36	mg/kg Ms	2,6 *	4,5 *	<2,0 *	10,0 *	<2,0
Fraction C36-C40	mg/kg Ms	<2,0 *	<2,0 *	<2,0 *	3,2 *	<2,0
Polychlorobiphényles						
Somme 6 PCB Somme 7 PCB (Ballschmiter) PCB (28) PCB (52) PCB (101) PCB (118)	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.c
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.c
PCB (28)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,00
PCB (52)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,00
PCB (101)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,00
PCB (118)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,00
PCB (138)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,00
PCB (153)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,00
PCB (180)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,00
Analyses sur éluat après lixiviation	l					
L/S cumulé	ml/g	10,0	10,0	10,0	10,0	10,
Conductivité électrique	μS/cm	130	140	71,1	75,8	64,
pΗ		8,8	8,5	9,1	8,9	8,
Température	°C	19,5	19,4	19,3	18,9	19,
Analyses Physico-chimiques sur é	luat					
Conductivité électrique pH Température Analyses Physico-chimiques sur é Résidu à sec Fluorures (F)	mg/l	100	<100	<100	<100	<10
Fluorures (F)	mg/l	0,2	0,2	0,3	0,3	0,

Your labs. Your service.

	Unité	476223 S6 1-2	476224 S6 3-4	476225 S7 0-1	476226 \$7 1-2	47622 87 2
COHV						
Tétrachlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,0
Trichloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,
Tétrachloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,
1.1-Dichloroéthane	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0
1,2-Dichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,0
1,1-Dichloroéthylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,0
Somme cis/trans-1,2- Dichloroéthylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n
Hydrocarbures totaux (ISO)						
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	<20,0	<20,0	<20,0	<2
Fraction C10-C12	mg/kg Ms	<4,0 *	<4,0 *	<4,0 *	<4,0 *	<4
Fraction C12-C16	mg/kg Ms	<4,0 *	<4,0 *	<4,0 *	<4,0 *	<4
Fraction C16-C20	mg/kg Ms	<2,0 *	<2,0 *	<2,0 *	<2,0 *	<2
Fraction C20-C24	mg/kg Ms	<2,0 *	<2,0 *	2,7 *	<2,0 *	<2
Fraction C24-C28	mg/kg Ms	<2,0 *	<2,0 *	4,8 *	2,6 *	2
Fraction C28-C32	mg/kg Ms	<2,0 *	<2,0 *	4,9 *	3,3 *	2
Fraction C32-C36	mg/kg Ms	<2,0 *	<2,0 *	3,1 *	<2,0 *	<2
Fraction C36-C40	mg/kg Ms	<2,0 *	<2,0 *	<2,0 *	<2,0 *	<2
Polychlorobiphényles						
Somme 6 PCB	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	ı
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	ı
PCB (28)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,0
PCB (52)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,0
PCB (101)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,0
PCB (118)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,0
PCB (138)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,0
PCB (153)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,0
PCB (180)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,0
Analyses sur éluat après lixiviation	l					
L/S cumulé	ml/g	10,0	10,0	10,0	10,0	1
Conductivité électrique	μS/cm	62,2	57,8	59,7	53,5	6
рН		9,0	8,9	9,1	8,7	
Température	°C	19,4	19,2	18,9	19,5	1
Analyses Physico-chimiques sur él	luat					
Résidu à sec	mg/l	<100	<100	<100	<100	<
Fluorures (F)	mg/l	0,4	0,2	0,3	0,2	

Your labs. Your service.

n° Cde 896648 Solide / Eluat

	Unité	476228 \$8 0-1	476229 \$8 1-2	476230 \$9 0-1	476231 \$9 1-2	476232 S9 2-3
COHV						
Tétrachlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,0
Tétrachlorométhane Trichloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,0
Tétrachloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,0
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,0
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,0
1,1-Dichloroéthane	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,1
1,2-Dichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,0
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,02
1,1-Dichloroéthylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,1
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,02
	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.c
Hydrocarbures totaux (ISO)						
Somme cis/trans-1,2- Dichloroéthylènes Hydrocarbures totaux (ISO) Hydrocarbures totaux C10-C40 Fraction C10-C12 Fraction C12-C16 Fraction C16-C20 Fraction C20-C24 Fraction C24-C28	mg/kg Ms	34,0	<20,0	<20,0	<20,0	34,
Fraction C10-C12	mg/kg Ms	<4,0 *	<4,0 *	<4,0 *	<4,0 *	<4,0
Fraction C12-C16	mg/kg Ms	<4,0 *	<4,0 *	<4,0 *	<4,0 *	6,2
Fraction C16-C20	mg/kg Ms	6,2 *	<2,0 *	<2,0 *	<2,0 *	4,5
Fraction C20-C24	mg/kg Ms	8,0 *	<2,0 *	<2,0 *	<2,0 *	4,5
Fraction C24-C28	mg/kg Ms	7,4 *	<2,0 *	<2,0 *	<2,0 *	6,3
Fraction C28-C32	mg/kg Ms	6,6 *	<2,0 *	<2,0 *	<2,0 *	6,5
Fraction C32-C36	mg/kg Ms	3,7 *	<2,0 *	<2,0 *	<2,0 *	4,3
Fraction C36-C40	mg/kg Ms	<2,0 *	<2,0 *	<2,0 *	<2,0 *	<2,0
Polychlorobiphényles						
Somme 6 PCB Somme 7 PCB (Ballschmiter) PCB (28) PCB (52) PCB (101) PCB (118)	mg/kg Ms	0,010 ×)	n.d.	n.d.	n.d.	n.c
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,012 ×)	n.d.	n.d.	n.d.	n.c
PCB (28)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,00
PCB (52)	mg/kg Ms	0,001	<0,001	<0,001	<0,001	<0,00
PCB (101)	mg/kg Ms	0,002	<0,001	<0,001	<0,001	<0,00
PCB (118)	mg/kg Ms	0,002	<0,001	<0,001	<0,001	<0,00
PCB (138)	mg/kg Ms	0,003	<0,001	<0,001	<0,001	<0,00
PCB (153)	mg/kg Ms	0,003	<0,001	<0,001	<0,001	<0,00
PCB (180)	mg/kg Ms	0,001	<0,001	<0,001	<0,001	<0,00
Analyses sur éluat après lixiviation	1					
L/S cumulé	ml/g	10,0	10,0	10,0	10,0	10,
Conductivité électrique	μS/cm	140	51,8	69,3	59,0	74,
рН		8,6	9,1	8,8	9,2	8,
Température	°C	19,0	19,4	19,1	19,3	19,
Analyses Physico-chimiques sur é	luat					
Conductivité électrique pH Température Analyses Physico-chimiques sur é Résidu à sec Fluorures (F)	mg/l	110	<100	<100	<100	<10
Fluorures (F)	mg/l	0,5	0,1	0,5	0,3	0,

RvA L 005

·	Unité	476208 \$1 0-1	476209 \$1 1-2	476210 \$2 0-1	476211 \$2 1-2	476212 \$3 0-1
* Analyses Physico-chimique	s sur éluat					
Cyanures totaux Indice phénol	μg/l	<1,0	<1,0	<1,0	<1,0	<1,0
Indice phénol	mg/l	<0,010	<0,010	<0,010	<0,010	<0,010
Chlorures (CI) Sulfates (SQ4)	mg/l	1,8	1,9	1,7	1,7	1,3
Sulfates (SO4)	mg/l	19	38	19	110	<5,0
COT Métaux sur éluat	mg/l	1,0	<1,0	<1,0	<1,0	<1,0
Antimoine (Sb)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
## Arsenic (As) Baryum (Ba) Cadmium (Cd)	μg/l	<10	<10	17	16	<10
	μg/l	<0,1	<0,1	<0,1	<0,1	<0,1
든 Chrome (Cr)	μg/l	<2,0	<2,0	2,7	16	<2,0
Cuivre (Cu)	μg/l	<2,0	<2,0	2,1	2,1	<2,0
Mercure (Hg)	μg/l	<0,03	<0,03	<0,03	<0,03	<0,03
Molybdène (Mo)	μg/l	5,7	5,7	10	<5,0	<5,0
Nickel (Ni)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
Plomb (Pb)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
Sélénium (Se)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
Cuivre (Cu) Mercure (Hg) Molybdène (Mo) Nickel (Ni) Plomb (Pb) Sélénium (Se) Zinc (Zn)	μg/l	<2,0	<2,0	<2,0	<2,0	<2,0

· *		Unité	476213 \$3 1-2	476214 \$3 2-3	476215 \$3 3-4	476216 \$3 4-5	476217 \$4 0-1
*	Analyses Physico-chimique	s sur éluat					
symbole	Cyanures totaux	μg/l	<1,0	<1,0	<1,0	<1,0	<1,0
sym	Indice phénol	mg/l	<0,010	<0,010	<0,010	<0,010	<0,010
par le	Chlorures (CI)	mg/l	1,3	1,1	1,9	1,5	1,8
s pa	Sulfates (SO4)	mg/l	<5,0	<5,0	<5,0	<5,0	57
signalés	COT	mg/l	<1,0	<1,0	<1,0	1,6	<1,0
	Métaux sur éluat						
sont	Antimoine (Sb)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
	Arsenic (As)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
accrédités	Baryum (Ba)	μg/l	<10	<10	<10	<10	<10
	Cadmium (Cd)	μg/l	<0,1	<0,1	<0,1	<0,1	<0,1
nou	Chrome (Cr)	μg/l	<2,0	<2,0	<2,0	2,5	<2,0
tats	Cuivre (Cu)	μg/l	<2,0	<2,0	<2,0	<2,0	<2,0
śsult	Mercure (Hg)	μg/l	<0,03	<0,03	<0,03	<0,03	<0,03
paramètres/résultats	Molybdène (Mo)	μg/l	<5,0	<5,0	<5,0	<5,0	6,9
nètr	Nickel (Ni)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
aran	Plomb (Pb)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
	Sélénium (Se)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
euls les	Zinc (Zn)	μg/l	<2,0	<2,0	<2,0	<2,0	<2,0

÷	Unité	476218 \$4 1-2	476219 \$4 4-5	476220 \$5 0-1	476221 \$5 1-2	476222 S6 0-1
* Analyses Physico-chimique	s sur éluat					
Cyanures totaux Indice phénol	μg/l	<1,0	<1,0	<1,0	<1,0	<1,0
Indice phénol	mg/l	<0,010	<0,010	<0,010	<0,010	<0,010
Chlorures (CI) Sulfates (SQ4)	mg/l	1,9	1,7	2,3	1,9	1,7
Sulfates (SO4)	mg/l	35	42	<5,0	<5,0	<5,0
COT Métaux sur éluat	mg/l	<1,0	<1,0	<1,0	1,1	<1,0
Antimoine (Sb)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
	μg/l	<5,0	<5,0	<5,0	5,5	<5,0
## Arsenic (As) Baryum (Ba) Cadmium (Cd)	μg/l	<10	<10	<10	<10	<10
	μg/l	<0,1	<0,1	<0,1	<0,1	<0,1
[Chrome (Cr)	μg/l	<2,0	<2,0	<2,0	<2,0	<2,0
cuivre (Cu)	μg/l	<2,0	<2,0	<2,0	<2,0	<2,0
Mercure (Hg)	μg/l	<0,03	<0,03	<0,03	<0,03	<0,03
Molybdène (Mo)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
Nickel (Ni)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
Plomb (Pb)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
Sélénium (Se)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
Cuivre (Cu) Mercure (Hg) Molybdène (Mo) Nickel (Ni) Plomb (Pb) Sélénium (Se) Zinc (Zn)	μg/l	<2,0	<2,0	<2,0	<2,0	<2,0

		Unité	476223 \$6 1-2	476224 \$6 3-4	476225 \$7 0-1	476226 \$7 1-2	476227 \$7 2-3
*	Analyses Physico-chimique	s sur éluat					
symbole	Cyanures totaux	μg/l	<1,0	<1,0	<1,0	<1,0	<1,0
sym	Indice phénol	mg/l	<0,010	<0,010	<0,010	<0,010	<0,010
par le	Chlorures (CI)	mg/l	1,4	1,6	1,1	1,6	2,3
s pa	Sulfates (SO4)	mg/l	<5,0	<5,0	<5,0	<5,0	5,9
signalés	COT	mg/l	<1,0	1,3	<1,0	<1,0	<1,0
	Métaux sur éluat						
sont	Antimoine (Sb)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
	Arsenic (As)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
accrédités	Baryum (Ba)	μg/l	<10	<10	<10	<10	<10
	Cadmium (Cd)	μg/l	<0,1	<0,1	<0,1	<0,1	<0,1
non	Chrome (Cr)	μg/l	<2,0	2,3	<2,0	<2,0	<2,0
	Cuivre (Cu)	μg/l	<2,0	<2,0	<2,0	<2,0	<2,0
ésult	Mercure (Hg)	μg/l	<0,03	<0,03	<0,03	<0,03	<0,03
paramètres/résultats	Molybdène (Mo)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
nètr	Nickel (Ni)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
arar	Plomb (Pb)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
	Sélénium (Se)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
sal sine	Zinc (Zn)	μg/l	<2,0	<2,0	<2,0	<2,0	<2,0

AL-West B.V.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

n° Cde 896648 Solide / Eluat

·.		Unité	476228 \$8 0-1	476229 S8 1-2	476230 S9 0-1	476231 \$9 1-2	476232 S9 2-3
* Analyses P	hysico-chimique	es sur éluat					
Cyanures to Indice phé	otaux	μg/l	<1,0	<1,0	<1,0	<1,0	<1,0
Indice phé	nol	mg/l	<0,010	<0,010	<0,010	<0,010	<0,010
	(CI)	mg/l	1,9	1,3	2,1	2,1	1,5
Chlorures Sulfates (S COT Métaux su	O4)	mg/l	26	<5,0	<5,0	<5,0	<5,0
ĕ COT		mg/l	3,0	<1,0	1,2	<1,0	1,4
	r éluat						
4ntimoine	(Sb)	μg/l	6,7	<5,0	<5,0	<5,0	<5,0
	s)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
Arsenic (A: Baryum (B Cadmium	a)	μg/l	<10	<10	<10	<10	<10
	Cd)	μg/l	<0,1	<0,1	<0,1	<0,1	<0,1
E Chrome (C	r)	μg/l	<2,0	<2,0	<2,0	<2,0	<2,0
Star Cuivre (Cu)	μg/l	7,9	<2,0	<2,0	<2,0	<2,0
Mercure (H	lg)	μg/l	<0,03	<0,03	<0,03	<0,03	<0,03
Molybdène	(Mo)	μg/l	5,5	<5,0	<5,0	<5,0	<5,0
Nickel (Ni)		μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
del Plomb (Pb)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
ຮູ້ Sélénium (Se)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0
Cuivre (Cu Mercure (H Molybdène Nickel (Ni) Plomb (Pb Sélénium (Zinc (Zn)		μg/l	<2,0	<2,0	<2,0	<2,0	<2,0

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

pe) Etant donné l'influence perturbatrice de l'échantillon, une dilution de l'échantillon a occasionnée une augmentation des limites de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 06.11.2019 Fin des analyses: 13.11.2019

Les résultats d'analyses ne concernent que ces échantillons soumis à essai. La qualité du résultat rendu est contrôlée et validée, mais la pertinence en est difficilement vérifiable car le laboratoire n'a pas connaissance du contexte du site, de l'historique de l'échantillon. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. M. Claude Gautheron, Tel. 33/380680143 Chargé relation clientèle

Kamer van Koophandel Nr. 08110898 Directeur ppa. Marc VAT/BTW-ID-Nr.: NL 811132559 B01 ppa. Marc van Gelder Dr. Paul Wimmer

ISO/IEC 17025 :2005.

AL-West B.V.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl

n° Cde 896648 Solide / Eluat

Liste des méthodes

le symbole

par

sont signalés

édités

nou

les paramètres/résultats

Seuls I

ISO/IEC 17025

document sont accrédités selon

es paramètres indiqués dans ce

Cf. NEN-ISO 10390 (sol uniquement): pH-H2O

Conforme à EN-ISO 11885, EN 16174: Arsenic (As) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Nickel (Ni) Plomb (Pb) Zinc (Zn)

Conforme à EN-ISO 17294-2 (2004): Antimoine (Sb) Arsenic (As) Baryum (Ba) Cadmium (Cd) Chrome (Cr) Cuivre (Cu)

Molybdène (Mo) Nickel (Ni) Plomb (Pb) Sélénium (Se) Zinc (Zn)

Conforme à ISO 10359-1, conforme à EN 16192: Fluorures (F)

Conforme à ISO 15923-1: Chlorures (CI) Sulfates (SO4)
Conforme à ISO 16772 et EN 16174: Mercure (Hq)

Conforme à ISO 22155: BTEX total *

Conforme à ISO 22155: Benzène Toluène Ethylbenzène m,p-Xylène o-Xylène Somme Xylènes Chlorure de Vinyle Dichlorométhane

Trichlorométhane Tétrachlorométhane Trichloroéthylène Tétrachloroéthylène 1,1,1-Trichloroéthane

1,1,2-Trichloroéthane 1,1-Dichloroéthane 1,2-Dichloroéthane cis-1,2-Dichloroéthène Trans-1,2-Dichloroéthylène

Somme cis/trans-1,2-Dichloroéthylènes

Conforme à NEN-EN 16179: Prétraitement de l'échantillon

conforme EN 16192: COT

conforme ISO 10694 (2008): COT Carbone Organique Total

Conforme NEN-EN-ISO 14403-2: Cyanures totaux

EN-ISO 16192: Indice phénol

équivalent à CEN/TS 16181: Naphtalène Acénaphtylène Acénaphtène Fluorène Phénanthrène Anthracène Fluoranthène Pyrène

Benzo(a)anthracène Chrysène Benzo(b)fluoranthène Benzo(k)fluoranthène Benzo(a)pyrène Dibenzo(a,h)anthracène Benzo(g,h,i)pérylène Indéno(1,2,3-cd)pyrène HAP (6 Borneff) - somme

Somme HAP (VROM) HAP (EPA) - somme

Equivalent à NF EN ISO 15216: Résidu à sec

ISO 16703: Fraction C10-C12 * Fraction C12-C16 * Fraction C16-C20 * Fraction C20-C24 * Fraction C24-C28 *

Fraction C28-C32 * Fraction C32-C36 * Fraction C36-C40 *

ISO 16703: Hydrocarbures totaux C10-C40

ISO 22155: 1,1-Dichloroéthylène

méthode interne: Préparation d'échantillons composés (2 éch.) Broyeur à mâchoires

NEN-EN 1483 (2007): Mercure (Hg)

NEN-EN 16167: Somme 6 PCB Somme 7 PCB (Ballschmiter) PCB (28) PCB (52) PCB (101) PCB (118) PCB (138) PCB (153)

PCB (180)

NEN-EN15934; EN12880: Matière sèche **NF EN 12457-2:** Lixiviation (EN 12457-2)

NF-EN 16174; NF EN 13657 (déchets): Minéralisation à l'eau régale

<Sans objet>: Antimoine cumulé (var. L/S) * Arsenic cumulé (var. L/S) * Baryum cumulé (var. L/S) * Cadmium cumulé (var. L/S) *

Chlorures cumulé (var. L/S) * Chrome cumulé (var. L/S) * Cuivre cumulé (var. L/S) *

Cyanures totaux cumulé (var. L/S) * Fraction soluble cumulé (var. L/S) * Indice phénol cumulé (var. L/S) * Mercure cumulé (var. L/S) * Molybdène cumulé (var. L/S) * Nickel cumulé (var. L/S) * Plomb cumulé (var. L/S) *

Sélénium cumulé (var. L/S) * Sulfates cumulé (var. L/S) * Zinc cumulé (var. L/S) *

<Sans objet>: Masse échantillon total inférieure à 2 kg

selon norme lixiviation: COT cumulé (var. L/S) * Fluorures cumulé (var. L/S) * selon norme lixiviation: L/S cumulé Conductivité électrique pH Température

JESTING RVA I 1005

-13-13510Z59-FR-PZZ

Annexe de N° commande 896648

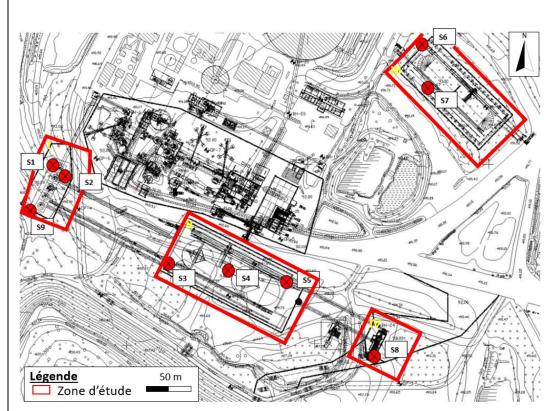
CONSERVATION, TEMPS DE CONSERVATION ET FLACONNAGE

	des échantillons est expiré pour les analyses suivantes :	
•	476208, 476209, 476210, 476211, 476212, 476213, 476214, 476215, 476216, 476217 476219, 476220, 476221, 476222, 476223, 476224, 476225, 476226, 476227, 476228 476230, 476231, 476232	, 476229,
Dichloroéthylènes	476208, 476209, 476210, 476211, 476212, 476213, 476214, 476215, 476216, 476217 476219, 476220, 476221, 476222, 476223, 476224, 476225, 476226, 476227, 476228 476230, 476231, 476232	, 476229,
•	476208, 476209, 476210, 476211, 476212, 476213, 476214, 476215, 476216, 476217 476219, 476220, 476221, 476222, 476223, 476224, 476225, 476226, 476227, 476228 476230, 476231, 476232	
	476208, 476209, 476210, 476211, 476212, 476213, 476214, 476215, 476216, 476217 476219, 476220, 476221, 476222, 476223, 476224, 476225, 476226, 476227, 476228 476230, 476231, 476232	
électrique	476208, 476209, 476210, 476211, 476212, 476213, 476214, 476215, 476216, 476217 476219, 476220, 476221, 476222, 476223, 476224, 476225, 476226, 476227, 476228 476230, 476231, 476232	
Dichloroéthène	476208, 476209, 476210, 476211, 476212, 476213, 476214, 476215, 476216, 476217 476219, 476220, 476221, 476222, 476223, 476224, 476225, 476226, 476227, 476228 476230, 476231, 476232	
	476208, 476209, 476210, 476211, 476212, 476213, 476214, 476215, 476216, 476217 476219, 476220, 476221, 476222, 476223, 476224, 476225, 476226, 476227, 476228 476230, 476231, 476232	, 476229,
•	476208, 476209, 476210, 476211, 476212, 476213, 476214, 476215, 476216, 476217 476219, 476220, 476221, 476222, 476223, 476224, 476225, 476226, 476227, 476228 476230, 476231, 476232	
•	476208, 476209, 476210, 476211, 476212, 476213, 476214, 476215, 476216, 476217 476219, 476220, 476221, 476222, 476223, 476224, 476225, 476226, 476227, 476228 476230, 476231, 476232	
4	476208, 476209, 476210, 476211, 476212, 476213, 476214, 476215, 476216, 476217 476219, 476220, 476221, 476222, 476223, 476224, 476225, 476226, 476227, 476228 476230, 476231, 476232	
	476208, 476209, 476210, 476211, 476212, 476213, 476214, 476215, 476216, 476217 476219, 476220, 476221, 476222, 476223, 476224, 476225, 476226, 476227, 476228 476230, 476231, 476232	
•	476208, 476209, 476210, 476211, 476212, 476213, 476214, 476215, 476216, 476217 476219, 476220, 476221, 476222, 476223, 476224, 476225, 476226, 476227, 476228 476230, 476231, 476232	
Toluène	476208, 476209, 476210, 476211, 476212, 476213, 476214, 476215, 476216, 476217 476219, 476220, 476221, 476222, 476223, 476224, 476225, 476226, 476227, 476228 476230, 476231, 476232	
•	476208, 476209, 476210, 476211, 476212, 476213, 476214, 476215, 476216, 476217 476219, 476220, 476221, 476222, 476223, 476224, 476225, 476226, 476227, 476228 476230, 476231, 476232	
Dichloroéthylène	476208, 476209, 476210, 476211, 476212, 476213, 476214, 476215, 476216, 476217 476219, 476220, 476221, 476222, 476223, 476224, 476225, 476226, 476227, 476228 476230, 476231, 476232	
	476208, 476209, 476210, 476211, 476212, 476213, 476214, 476215, 476216, 476217 476219, 476220, 476221, 476222, 476223, 476224, 476225, 476226, 476227, 476228 476230, 476231, 476232	
	476208, 476209, 476210, 476211, 476212, 476213, 476214, 476215, 476216, 476217 476219, 476220, 476221, 476222, 476223, 476224, 476225, 476226, 476227, 476228 476230, 476231, 476232	
	476208, 476209, 476210, 476211, 476212, 476213, 476214, 476215, 476216, 476217 476219, 476220, 476221, 476222, 476223, 476224, 476225, 476226, 476227, 476228 476230, 476231, 476232	
1 1 1 Trichlereéthana	476208, 476209, 476210, 476211, 476212, 476213, 476214, 476215, 476216, 476217	476210

476230, 476231, 476232

mètres/résultats non accrédités sont signalés par le symbole « * ». L

476219, 476220, 476221, 476222, 476223, 476224, 476225, 476226, 476227, 476228, 476229,


DOC-13-13510259-FR-P24

PA19 3587

AIRVAULT (79)

Annexe 5 : Cartographie des résultats d'analyses

	Métaux	НСТ	HCT C12- C16	НАР	BTEX	COHV	РСВ
S10-1	Х	nd	nd	nd	nd	nd	nd
S1 1-2	х	nd	nd	nd	nd	nd	nd
S2 0-1	Х	nd	nd	Х	nd	nd	nd
S2 1-2	Х	Х	nd	Х	nd	nd	nd
S3 0-1	х	nd	nd	nd	nd	nd	nd
S3 1-2	х	nd	nd	nd	nd	nd	nd
S3 2-3	х	nd	nd	nd	nd	nd	nd
S3 3-4	Х	nd	nd	nd	nd	nd	nd
S3 4-5	Х	nd	nd	nd	nd	nd	nd
S4 0-1	Х	nd	nd	nd	nd	nd	nd
S4 1-2	х	nd	nd	nd	nd	nd	nd
S4 4-5	Х	Х	nd	nd	nd	nd	nd
S5 0-1	Х	nd	nd	nd	nd	nd	nd
S5 1-2	х	Х	nd	nd	nd	nd	nd
S6 0-1	Х	nd	nd	nd	nd	nd	nd
S6 1-2	Х	nd	nd	Х	nd	nd	nd
S6 3-4	Х	nd	nd	nd	nd	nd	nd
S7 0-1	Х	nd	nd	nd	nd	nd	nd
S7 1-2	Х	nd	nd	nd	nd	nd	nd
S7 2-3	Х	nd	nd	nd	nd	nd	nd
S8 0-1	Х	Х	nd	Х	Х	nd	Х
S8 1-2	Х	nd	nd	nd	nd	nd	nd
S9 0-1	Х	nd	nd	nd	nd	nd	nd
S9 1-2	х	nd	nd	nd	nd	nd	nd
S9 2-3	х	Х	Х	nd	nd	nd	nd

x : Présence de la substance, supérieure à la limite de quantification du laboratoire mais inférieure à la note ASPITET (uniquement pour les métaux) na : non analysé

X : Présence de la substance, supérieure à la limite de quantification du laboratoire (pour les métaux : supérieures à la note ASPITET)

nd : non détecté

PA19 3587

AIRVAULT (79)

Annexe 5 : Cartographie des résultats d'analyses

Résultats d'analyses vis-à-vis des risques sanitaires

	S1 0-1	S1 1-2	S2 0-1	S2 1-2	S3 0-1	S3 1-2	S3 2-3	S3 3-4	S3 4-5	S4 0-1	S4 1-2	S4 4-5	S5 0-1
Analyses responsables de l'orientation des déblais	COT sur brut*	-	-	Sulfates sur éluats*	-	-	-	-	-	-	-	-	-
Indice organoleptique suspect	-	-	-	-	-	-	-	-	-	-	-	-	-
Filière d'évacuation	ISDI	ISDI	ISDI	ISDI	ISDI	ISDI	ISDI	ISDI	ISDI	ISDI	ISDI	ISDI	ISDI

	S5 1-2	S6 0-1	S6 1-2	S6 3-4	S7 0-1	S7 1-2	S7 2-3	S8 0-1	S8 1-2	S9 0-1	S9 1-2	S9 2-3
Analyses responsables de l'orientation des déblais	-	COT sur brut*	COT sur brut*	-	-	-	-	Antimoine sur éluats	COT sur brut*	COT sur brut*	1	-
Indice organoleptique suspect	-	-	ı	-	-	-	-	-	-	-	-	-
Filière d'évacuation	ISDI	ISDI	ISDI	ISDI	ISDI	ISDI	ISDI	ISDI-AS	ISDI	ISDI	ISDI	ISDI

^{*} Non pris en compte dans l'orientation des déblais

Résultats d'analyses vis-à-vis des éventuelles évacuations de terres